Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework for CO Capture.

ACS Appl Mater Interfaces

Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian 116023, China.

Published: January 2018

The conversion efficiency and product selectivity of the electroreduction of carbon dioxide have been largely limited by the low CO solubility in aqueous solution. To relieve this problem, Cu(BTC) (Cu-MOF) as CO capture agent was introduced into a carbon paper based gas diffusion electrode (GDE) in this study. The faradaic efficiencies (FEs) of CH on GDE with Cu-MOF weight ratio in the range of 7.5-10% are 2-3-fold higher than that of GDE without Cu-MOF addition under negative potentials (-2.3 to -2.5 V vs SCE), and the FE of the competitive hydrogen evolution reaction (HER) is reduced to 30%. This work paves the way to develop GDE with high catalytic activity for ERC.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b15255DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
gde cu-mof
8
selective electrochemical
4
electrochemical reduction
4
reduction carbon
4
dioxide based
4
based metal
4
metal organic
4
organic framework
4
framework capture
4

Similar Publications

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Integrating climate and physical constraints into assessments of net capture from direct air capture facilities.

Proc Natl Acad Sci U S A

January 2025

Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

Limiting climate change to targets enshrined in the Paris Agreement will require both deep decarbonization of the energy system and the deployment of carbon dioxide removal at potentially large scale (gigatons of annual removal). Nations are pursuing direct air capture to compensate for inertia in the expansion of low-carbon energy systems, decarbonize hard-to-abate sectors, and address legacy emissions. Global assessments of this technology have failed to integrate factors that affect net capture and removal cost, including ambient conditions like temperature and humidity, as well as emission factors of electricity and natural gas systems.

View Article and Find Full Text PDF

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.

View Article and Find Full Text PDF

Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor.

Adv Sci (Weinh)

January 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.

Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!