A supramolecular FRET pair based on the ultrahigh binding affinity between cyanine 3 conjugated cucurbit[7]uril (CB[7]-Cy3) and cyanine 5 conjugated adamantylamine (AdA-Cy5) was exploited as a new synthetic tool for imaging cellular processes in live cells. Confocal laser scanning microscopy revealed that CB[7]-Cy3 and AdA-Cy5 were intracellularly translocated and accumulated in lysosomes and mitochondria, respectively. CB[7]-Cy3 and AdA-Cy5 then formed a host-guest complex, reported by a FRET signal, as a result of the fusion of lysosomes and mitochondria. This observation not only indicated that CB[7] forms a stable complex with AdA in a live cell, but also suggested that this FRET pair can visualize dynamic organelle fusion processes, such as those involved in the degradation of mitochondria through autophagy (mitophagy), by virtue of its small size, chemical stability, and ease of use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201711629 | DOI Listing |
Nat Commun
December 2024
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
Transition metals like Zn are essential for all organisms including bacteria, but fluctuations of their concentrations in the cell can be lethal. Organisms have thus evolved complex mechanisms for cellular metal homeostasis. One mechanistic paradigm involves pairs of transcription regulators sensing intracellular metal concentrations to regulate metal uptake and efflux.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
AMPEL and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1M1,Canada.
Decorating a gold surface with molecular-level control over the positioning of DNA probes was demonstrated using a self-assembled monolayer (SAM) of wireframe DNA nanocube structures. The DNA nanocubes were specifically adsorbed and oriented using thiol-modified DNA on one face of the cube. The DNA nanocube SAM had a uniform coverage over the gold single crystal bead electrode with a separation of 20-30 nm measured by AFM.
View Article and Find Full Text PDFJ Vis Exp
October 2024
Department of Chemistry, University of Zurich;
Single-molecule Förster Resonance Energy Transfer (smFRET) excels in studying dynamic biomolecules by allowing precise observation of their conformational changes over time. To monitor RNA dynamics with smFRET, we developed a method to covalently label RNAs at their termini with a FRET pair of fluorophores. This direct end-labeling strategy targets the 5'-phosphate by carbodiimide (EDC)/N-hydroxysuccinimide (NHS) activation and the 3'-ribose by periodate oxidation, which can be adapted to other RNAs regardless of their size and sequence to study them independently of artificial modifications.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2024
Key Laboratory of RNA Science and Engineering, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
RNA's inherent flexibility and dynamics pose great challenges to characterize its structure and dynamics using conventional techniques including X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy. Three complementary molecular ruler techniques, the electron paramagnetic resonance (EPR) spectroscopy, X-ray scattering interferometry (XSI) and Förster resonance energy transfer (FRET) which measure intramolecular and intermolecular pair-wise distance distributions in the nanometer range in a solution, have become increasingly popular and been widely used to explore RNA structure and dynamics. The prerequisites for successful application of such techniques are to achieve site-specific labeling of RNAs with spin labels, fluorescent tags, or gold nanoparticles, respectively, which are however, challenging, especially to large RNAs (generally >200 nts).
View Article and Find Full Text PDFACS Sens
October 2024
Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
Although several imaging strategies for dual fluorescence (or Förster) resonance energy transfer (FRET) biosensors have been reported, their implementation is challenging because of the limited performance of fluorescent proteins and the spectral overlap of FRET biosensors. These processes often require additional data calibration to eliminate artifacts. Many CFP/YFP FRET biosensors have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!