Optimal propulsion of an undulating slender body with anisotropic friction.

Soft Matter

SMAT-C, Departamento de Física de la Universidad de Santiago de Chile, Avenida Ecuador 3493, 9170124 Estación Central, Santiago, Chile.

Published: January 2018

This study investigates theoretically and numerically the propulsive sliding of a slender body. The body sustains a transverse and propagative wave along its main axis, and undergoes anisotropic friction caused by its surface texture sliding on the floor. A model accounting for the anisotropy of frictional forces acting on the body is implemented. This describes the propulsive force and gives the optimal undulating parameters for efficient forward propulsion. The optimal wave characteristics are effectively compared to the undulating motion of a slithering snakes, as well as with the motion of sandfish lizards swimming through the sand. Furthermore, numerical simulations have indicated the existence of certain specialized segments along the body that are highly efficient for propulsion, explaining why snakes lift parts of their body while slithering. Finally, the inefficiency of slithering as a form of locomotion to ascend a slope is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm01545cDOI Listing

Publication Analysis

Top Keywords

slender body
8
anisotropic friction
8
body
6
optimal propulsion
4
propulsion undulating
4
undulating slender
4
body anisotropic
4
friction study
4
study investigates
4
investigates theoretically
4

Similar Publications

Hidden Urban Biodiversity: A New Species of the Genus Mittleman, 1950 (Squamata: Scincidae) from Chengdu, Sichuan Province, Southwest China.

Animals (Basel)

January 2025

CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.

The genus Mittleman, 1950, belonging to the family Scincidae, exhibits considerable morphological convergence, complicating species delimitation and resulting in underestimated diversity. Currently, 41 species are formally recognized in this genus, although this figure likely underestimates its true richness. In this study, a new species of the genus , , is described from urban and suburban areas of Chengdu, Sichuan Province, Southwest China.

View Article and Find Full Text PDF

The aim of this study was to clarify the taxonomic identification of a hemoflagellate and assess the effect of trypanosome infection on Larimichthys crocea. Giemsa staining showed the presence of three morphotypes of trypomastigotes. The trypanosomes had the following morphological characteristics: a slender body with a long flagellum at the front; body size 12.

View Article and Find Full Text PDF

Aerial manipulators can manipulate objects while flying, allowing them to perform tasks in dangerous or inaccessible areas. Advanced aerial manipulation systems are often based on rigid-link mechanisms, but the balance between dexterity and payload capacity limits their broader application. Combining unmanned aerial vehicles with continuum manipulators emerges as a solution to this trade-off, but these systems face challenges with large actuation systems and unstable control.

View Article and Find Full Text PDF

A hydrodynamic antenna: novel lateral line system in the tail of myliobatid stingrays.

Proc Biol Sci

January 2025

Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

Eagle rays, cownose rays and manta rays (order Myliobatiformes) have a slender tail that can be longer than the animal's body length, but its function and structure are unknown. Using histology, immunohistochemistry and three-dimensional imaging with micro-computed tomography scans, we describe the anatomy and function of the tail in , the cownose ray. The tail is an extension of the vertebral column with unique morphological specializations.

View Article and Find Full Text PDF

Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!