Studies that rely on fluorescence imaging of nonadherent cells that are cultured in suspension, such as Escherichia coli, are often hampered by trade-offs that must be made between data throughput and imaging resolution. We developed a platform for microfluidics-assisted cell screening (MACS) that overcomes this trade-off by temporarily immobilizing suspension cells within a microfluidics chip. This enables high-throughput and automated single-cell microscopy for a wide range of cell types and sizes. As cells can be rapidly sampled directly from a suspension culture, MACS bypasses the need for sample preparation, and therefore allows measurements without perturbing the native cell physiology. The setup can also be integrated with complex growth chambers, and can be used to enrich or sort the imaged cells. Furthermore, MACS facilitates the visualization of individual cytoplasmic fluorescent proteins (FPs) in E. coli, allowing low-abundance proteins to be counted using standard total internal reflection fluorescence (TIRF) microscopy. Finally, MACS can be used to impart mechanical pressure for assessing the structural integrity of individual cells and their response to mechanical perturbations, or to make cells take up chemicals that otherwise would not pass through the membrane. This protocol describes the assembly of electronic control circuitry, the construction of liquid-handling components and the creation of the MACS microfluidics chip. The operation of MACS is described, and automation software is provided to integrate MACS control with image acquisition. Finally, we provide instructions for extending MACS using an external growth chamber (1 d) and for how to sort rare cells of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059380PMC
http://dx.doi.org/10.1038/nprot.2017.127DOI Listing

Publication Analysis

Top Keywords

single-cell microscopy
8
microfluidics-assisted cell
8
cell screening
8
macs
8
microfluidics chip
8
cells
7
suspension
4
microscopy suspension
4
suspension cultures
4
cultures microfluidics-assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!