Carbonaceous particle exposure and air pollution in general lead to a multitude of adverse human health effects and pose multiple challenges in terms of exposure, risk and safety assessment. Highly desirable for fast screening are label-free approaches for detecting these particle types in biological or medical context. We report a powerful approach for detecting carbonaceous particles using photothermal pump-probe microscopy, which directly probes their strong light absorption. The principle and reliability of this approach is demonstrated by examining 4 different carbon black (CB) species modeling soot with diameters ranging from 13 to 500 nm. Our results show that the proposed approach is applicable to a large number of CB types as well as black carbon. As the particles show a strong absorption over a wide spectral range as compared to other absorbing species, we can image CB particles almost background free. Our pump-probe approach allows label-free optical detection and unambiguous localization of CB particles in (bio)fluids and 3D cellular environments. In combination with fluorescence microscopy, this method allows for simultaneous colocalization of CB with different cellular components using fluorophores as shown here for human lung fibroblasts. We further demonstrate the versatility of pump-probe detection in a flow cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201700233 | DOI Listing |
Unlabelled: Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology, New York Medical College, Valhalla, NY, USA.
Non-invasive, low intensity focused ultrasound is an emerging neuromodulation technique that offers the potential for precision, personalized therapy. An increasing body of research has identified mechanosensitive ion channels that can be modulated by FUS and support acute electrical activity in neurons. However, neuromodulatory effects that persist from hours to days have also been reported.
View Article and Find Full Text PDFiScience
November 2024
Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
Chronic venous insufficiency (CVI) is a global health concern with significant public health and individual impact. Currently available diagnostic methods cannot visualize microvenous pathologies that have shown to result in severe forms of CVI and also affect the skin. Optical coherence tomography angiography (OCTA) may close the CVI diagnostic gap by providing a fast, label-free, and non-invasive solution to visualize cutaneous microvasculature.
View Article and Find Full Text PDFHeliyon
January 2025
Center for MicroElectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal.
Recently, Organ-on-a-Chip (OoC) platforms have arisen as an increasingly relevant experimental tool for successfully replicating human physiology and disease. However, there is a lack of a standard technology to monitor the OoC parameters, especially in a non-invasive and label-free way. Photoacoustic (PA) systems can be considered an alternative and accurate assessment method for OoC platforms.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!