Purpose: Inflammation is a feature of lung injury and plays a critical role in pulmonary vascular remodeling. Bone marrow-derived cells (BMCs) have anti-inflammatory properties and favor macrophage differentiation into an alternatively activated regulatory M2 profile. We investigated the effect of autologous BMCs on monocrotaline-induced pulmonary vessel remodeling and lung inflammation in rats, by direct administration into lungs via the airway.
Methods: BMCs were isolated and plastic-adherent cells were cultured for 3 weeks. 1 week following monocrotaline (60 mg/kg) treatment, fluorescently labeled autologous BMCs (1 × 10 cells) or vehicle were administered intratracheally to male Sprague-Dawley rats. 4 weeks following monocrotaline treatment, lung pathology was evaluated.
Results: Monocrotaline increased pulmonary vessel wall thickness, perivascular infiltration, alveolar septal thickening, and inflammatory cell infiltration including T lymphocytes and monocytes/macrophages in alveolar areas, and also increased mRNA expression of inflammatory-related cytokines including IL-10 in the lung. Intratracheal administration of autologous BMCs prevented pulmonary vessel wall thickening and perivascular infiltration, and increased CD163-positive M2-like macrophages in perivascular areas. BMC administration inhibited the thickening of alveolar septa and reduced monocrotaline-induced inflammatory cell infiltration in lung parenchyma compared with monocrotaline-vehicle-treated-rats. Furthermore, BMCs administration increased expression of CD163-positive cells in perivascular areas and maintained the increased mRNA expression of IL-10.
Conclusions: Intratracheal administration of autologous BMCs prevented monocrotaline-induced pulmonary vessel remodeling and lung inflammation, at least in part, through induction of alternatively activated macrophages and regulation of the local lung environment toward resolving inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00408-017-0075-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!