A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peptide-substituted oligonucleotide synthesis and non-toxic, passive cell delivery. | LitMetric

Peptide-substituted oligonucleotide synthesis and non-toxic, passive cell delivery.

Signal Transduct Target Ther

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.

Published: February 2021

Chemically modified oligodeoxynucleotides (ODNs) are known to modulate gene expression by interacting with RNA. An efficient approach for synthesizing amino acid- or peptide-substituted triazolylphosphonate analogs (TP ODNs) has been developed to provide improved stability and cell uptake. The chemistry is quite general, as peptides can be introduced throughout the TP ODN at any preselected internucleotide linkage. These synthetic TP ODNs enter cells through endocytosis in the absence of transfection reagents and localize into perinuclear organelles. The entrapped ODNs are released into the cytoplasm by treatment with endosomal-releasing agents and several are then active as microRNA inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5661639PMC
http://dx.doi.org/10.1038/sigtrans.2016.19DOI Listing

Publication Analysis

Top Keywords

peptide-substituted oligonucleotide
4
oligonucleotide synthesis
4
synthesis non-toxic
4
non-toxic passive
4
passive cell
4
cell delivery
4
delivery chemically
4
chemically modified
4
modified oligodeoxynucleotides
4
odns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!