The scaffold protein synectin plays a critical role in the trafficking and regulation of membrane receptor pathways. As platelet-derived growth factor receptor (PDGFR) is essential for hepatic stellate cell (HSC) activation and liver fibrosis, we sought to determine the role of synectin on the PDGFR pathway and development of liver fibrosis. Mice with deletion of synectin from HSC were found to be protected from liver fibrosis. mRNA sequencing revealed that knockdown of synectin in HSC demonstrated reductions in the fibrosis pathway of genes, including PDGFR-β. Chromatin IP assay of the PDGFR-β promoter upon synectin knockdown revealed a pattern of histone marks associated with decreased transcription, dependent on p300 histone acetyltransferase. Synectin knockdown was found to downregulate PDGFR-α protein levels, as well, but through an alternative mechanism: protection from autophagic degradation. Site-directed mutagenesis revealed that ubiquitination of specific PDGFR-α lysine residues was responsible for its autophagic degradation. Furthermore, functional studies showed decreased PDGF-dependent migration and proliferation of HSC after synectin knockdown. Finally, human cirrhotic livers demonstrated increased synectin protein levels. This work provides insight into differential transcriptional and posttranslational mechanisms of synectin regulation of PDGFRs, which are critical to fibrogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752303PMC
http://dx.doi.org/10.1172/jci.insight.92821DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
12
synectin knockdown
12
synectin
10
synectin hsc
8
protein levels
8
autophagic degradation
8
synectin promotes
4
promotes fibrogenesis
4
fibrogenesis regulating
4
regulating pdgfr
4

Similar Publications

Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells.

Cell Mol Life Sci

December 2024

Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.

Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.

View Article and Find Full Text PDF

Objectives: To explore the role of the cGAS-STING signaling pathway in the therapeutic mechanism of Formula (LXJDHYF) for acute-on-chronic liver failure (ACLF) in mice.

Methods: Thirty C57BL/6 mice were randomly divided into blank control group, model group, low- and high-dose LXJDHYF groups, and H151 (a specific cGAS-STING pathway inhibitor) group (6). In all but the control group, the mice were treated with CCl to induce liver cirrhosis followed by intraperitoneal injections of lipopolysaccharide and D-amino galactose to establish mouse models of ACLF.

View Article and Find Full Text PDF

LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36.

Pharmacol Res

December 2024

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes.

View Article and Find Full Text PDF

Obeticholic Acid Aggravates Liver Fibrosis by Activating Hepatic Farnesoid X Receptor-induced Apoptosis in Cholestatic Mice.

Chem Biol Interact

December 2024

New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Obeticholic acid (OCA) was approved for the treatment of primary biliary cholangitis (PBC) patients. However, it can cause severe drug-induced liver injury (DILI), which may put PBC patients at risk of acute-on-chronic liver failure (ACLF) and even death. Farnesoid X receptor (FXR) is considered as the target of OCA for cholestasis, but there is still a lack of research on whether hepatic and ileal FXR have different effects after OCA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!