Endothelial cell (EC) metabolism has lately emerged as a novel and promising therapeutic target to block vascular dysregulation associated with diseases like cancer and blinding eye disease. Glycolysis, fatty acid oxidation (FAO) and, more recently, glutamine/asparagine metabolism emerged as key regulators of EC metabolism, able to impact angiogenesis in health and disease. ECs are highly glycolytic as they require ATP and biomass for vessel sprouting. Notably, a regulator of the glycolytic pathway, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3, controls vessel sprouting during the angiogenic switch and its inhibition in tumour ECs leads to vessel normalization, thereby reducing metastasis and ameliorating chemotherapy. Moreover, FAO promotes EC proliferation through DNA synthesis, and plays an essential role in lymphangiogenesis via epigenetic regulation of histone acetylation. Pathological angiogenesis was decreased upon blockade of carnitine palmitoyltransferase 1, a regulator of FAO in ECs. More recently, metabolism of glutamine, in conjunction with asparagine, was reported to maintain EC sprouting through TCA anaplerosis, redox homeostasis, mTOR activation and endoplasmic stress control. Inactivation or blockade of glutaminase 1, which hydrolyses glutamine into ammonia and glutamate, impairs angiogenesis in health and disease, while silencing of asparagine synthetase reduces vessel sprouting In this review, we summarize recent insights into EC metabolism and discuss therapeutic implications of targeting EC metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746547 | PMC |
http://dx.doi.org/10.1098/rsob.170219 | DOI Listing |
Phytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China.
Peripheral artery disease (PAD), primarily caused by atherosclerosis, leads to the narrowing or blockage of arteries that supply blood to the limbs. This study explores the pro-angiogenic effects of L-theanine and its underlying mechanisms in a mouse model of hindlimb ischemia (HLI). To evaluate L-theanine's pro-angiogenic effects, human umbilical vein endothelial cells (HUVECs) were subjected to tube formation, migration, sprouting, and proliferation assays.
View Article and Find Full Text PDFCommun Biol
January 2025
Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).
View Article and Find Full Text PDFTheranostics
January 2025
Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
The cascade of events leading to tumor formation includes induction of a tumor supporting neovasculature, as a primary hallmark of cancer. Developing vasculature is difficult to evaluate but can be captured using microfluidic chip technology and patient derived cells. Herein, we established an approach to investigate the mechanisms promoting tumor vascularization and vascular targeted therapies via co-culture of cancer spheroids and endothelial cells in a three dimensional environment.
View Article and Find Full Text PDFBiomedicines
December 2024
LAETA-Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal.
Background: Understanding vascular development and the key factors involved in regulating angiogenesis-the growth of new blood vessels from pre-existing vasculature-is crucial for developing therapeutic approaches to promote wound healing. Computational techniques offer valuable insights into improving angiogenic strategies, leading to enhanced tissue regeneration and improved outcomes for chronic wound healing. While chorioallantoic membrane (CAM) models are widely used for examining fundamental mechanisms in vascular development, they lack quantification of essential parameters such as blood flow rate, intravascular pressure, and changes in vessel diameter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!