Substantia nigra pars compacta (SNc) dopamine neurons and their targets are involved in addiction and cue-induced relapse. However, afferents onto SNc dopamine neurons themselves appear insensitive to drugs of abuse, such as cocaine, when afferents are collectively stimulated electrically. This contrasts with ventral tegmental area (VTA) dopamine neurons, whose glutamate afferents react robustly to cocaine. We used an optogenetic strategy to isolate identified SNc inputs and determine whether cocaine sensitivity in the mouse SNc circuit is conferred at the level of three glutamate afferents: dorsal raphé nucleus (DR), pedunculopontine nucleus (PPN), and subthalamic nucleus (STN). We found that excitatory afferents to SNc dopamine neurons are sensitive to cocaine in an afferent-specific manner. A single exposure to cocaine led to PPN-innervated synapses reducing the AMPA-to-NMDA receptor-mediated current ratio. In contrast to work in the VTA, this was due to increased NMDA receptor function with no change in AMPA receptor function. STN synapses showed a decrease in calcium-permeable AMPA receptors after cocaine, but no change in the AMPA-to-NMDA ratio. Cocaine also increased the release probability at DR-innervated and STN-innervated synapses, quantified by decreases in paired-pulse ratios. However, release probability at PPN-innervated synapses remained unaffected. By examining identified inputs, our results demonstrate a functional distribution among excitatory SNc afferent nuclei in response to cocaine, and suggest a compelling architecture for differentiation and separate parsing of inputs within the nigrostriatal system. Prior studies have established that substantia nigra pars compacta (SNc) dopamine neurons are a key node in the circuitry that drives addiction and relapse, yet cocaine apparently has no effect on electrically stimulated excitatory inputs. Our study is the first to demonstrate the functional impact of a drug of abuse on synaptic mechanisms of identified afferents to the SNc. Optogenetic dissection of inputs originating from dorsal raphé, pedunculopontine, and subthalamic nuclei were tested for synaptic modifications following cocaine exposure. Our results demonstrate that cocaine differentially induces modifications to SNc synapses depending on input origin. This presents implications for understanding dopamine processing of motivated behavior; most critically, it indicates that dopamine neurons selectively modulate signal reception processed by afferent nuclei.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792475 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1975-17.2017 | DOI Listing |
J Control Release
January 2025
Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China. Electronic address:
Chronic pain is a prevalent condition affecting a significant portion of the global population and is known to be associated with an increased risk of cardiovascular diseases. Despite the clinical relevance, the mechanisms underlying the link between chronic pain and myocardial ischemia-reperfusion (MI/R) injury remain poorly understood. This study aimed to investigate the role of the superior cervical ganglion (SCG) in mediating the effects of chronic pain on MI/R injury and to develop a novel therapeutic strategy.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark. Electronic address:
The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF.
View Article and Find Full Text PDFBrain Res Bull
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China; Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China. Electronic address:
Toxicology
January 2025
Department of Medical Elementology and Toxicology, Jamia Hamdard, Delhi, India, 110062. Electronic address:
Malathion is an organophosphate compound widely used as an insecticide in the agriculture sector and is toxic to humans and other mammals. Although several studies have been conducted at different level in different animal models. But there is no work has been conducted on the toxicological correlation from cellular to behavioral level on surviving species model.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, PR China. Electronic address:
Neurodegenerative diseases are a group of diseases that pose a serious threat to human health, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, it has been found that mitochondrial remodeling plays an important role in the onset and progression of neurodegenerative diseases. Mitochondrial remodeling refers to the dynamic regulatory process of mitochondrial morphology, number and function, which can affect neuronal cell function and survival by regulating mechanisms such as mitochondrial fusion, division, clearance and biosynthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!