Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hemoconcentration is observed in bed rest studies, descent from altitude, and exposure to microgravity. Hemoconcentration triggers erythrocyte losses to subsequently normalize erythrocyte concentration. The mechanisms of erythrocyte loss may involve enhanced hemolysis, but has never been measured directly in bed rest studies. Steady-state hemolysis was evaluated by measuring two heme degradation products, endogenous carbon monoxide concentration [CO] and urobilinogen in feces, in 10 healthy men, before, during, and after two campaigns of 21 days of 6° head-down-tilt (HDT) bed rest. The subjects were hemoconcentrated at 10 and 21 days of bed rest: mean concentrations of hemoglobin (15.0 ± 0.2 g/L and 14.6 ± 0.1 g/L, respectively) and erythrocytes (5.18 ± 0.06E6/L and 5.02 ± 0.06E6/L, respectively) were increased compared to baseline (all s < 0.05). In contrast, mean hemoglobin mass (743 ± 19 g) and number of erythrocytes (2.56 ± 0.07E13) were decreased at 21 days of bed rest (both s < 0.05). Indicators of hemolysis mean [CO] (1660 ± 49 ppb and 1624 ± 48 ppb, respectively) and fecal urobilinogen concentration (180 ± 23 mg/day and 199 ± 22 mg/day, respectively) were unchanged at 10 and 21 days of bed rest compared to baseline (both s > 0.05). A significant decrease in [CO] (-505 ppb) was measured at day 28 after bed rest. HDT bed rest caused hemoconcentration in parallel with lower hemoglobin mass. Circulating indicators of hemolysis remained unchanged throughout bed rest supporting that enhanced hemolysis did not contribute significantly to erythrocyte loss during the hemoconcentration of bed rest. At day 28 after bed rest, decreased hemolysis accompanied the recovery of erythrocytes, a novel finding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742697 | PMC |
http://dx.doi.org/10.14814/phy2.13469 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!