Lumpy species coexistence arises robustly in fluctuating resource environments.

Proc Natl Acad Sci U S A

Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom;

Published: January 2018

The effect of life-history traits on resource competition outcomes is well understood in the context of a constant resource supply. However, almost all natural systems are subject to fluctuations of resources driven by cyclical processes such as seasonality and tidal hydrology. To understand community composition, it is therefore imperative to study the impact of resource fluctuations on interspecies competition. We adapted a well-established resource-competition model to show that fluctuations in inflow concentrations of two limiting resources lead to the survival of species in clumps along the trait axis, consistent with observations of "lumpy coexistence" [Scheffer M, van Nes EH (2006) 103:6230-6235]. A complex dynamic pattern in the available ambient resources arose very early in the self-organization process and dictated the locations of clumps along the trait axis by creating niches that promoted the growth of species with specific traits. This dynamic pattern emerged as the combined result of fluctuations in the inflow of resources and their consumption by the most competitive species that accumulated the bulk of biomass early in assemblage organization. Clumps emerged robustly across a range of periodicities, phase differences, and amplitudes. Given the ubiquity in the real world of asynchronous fluctuations of limiting resources, our findings imply that assemblage organization in clumps should be a common feature in nature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789903PMC
http://dx.doi.org/10.1073/pnas.1705944115DOI Listing

Publication Analysis

Top Keywords

fluctuations inflow
8
limiting resources
8
clumps trait
8
trait axis
8
dynamic pattern
8
assemblage organization
8
organization clumps
8
fluctuations
5
resources
5
lumpy species
4

Similar Publications

Factors affecting mass inflow of quaternary ammonium compounds into Japanese sewage treatment plants.

J Environ Manage

December 2024

Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.

Quaternary ammonium compounds (QACs), ecotoxic organic chemicals linked to multidrug resistance, are being used increasingly, for example to prevent the transmission of infections such as covid-19, in households, hospitals, and industry. To understand the locations, fluctuations, and fractions of QACs entering sewers, we monitored 14 QACs (benzalkonium chloride [BAC]-C8, C10, C12, C14, C16, and C18; dialkyldimethylammonium chloride [DDAC]-C8, C10, and C12; alkyltrimethylammonium chloride [ATAC]-C12, C16, and C18; benzethonium chloride; and cetylpyridinium chloride), and a disinfectant (chlorhexidine) in influent at four Japanese sewage treatment plants (STPs) five times throughout a year. Mass inflows were relatively stable throughout the year, indicating that the recent seasonal covid-19 epidemic did not greatly influence them.

View Article and Find Full Text PDF

Sudden shocking load events featuring significant increases in inflow quantities or concentrations of wastewater treatment plants (WWTPs), are a major threat to the attainment of treated effluents to discharge quality standards. To aid in real-time decision-making for stable WWTP operations, this study developed a probabilistic deep learning model that comprises encoder-decoder long short-term memory (LSTM) networks with added capacity of producing probability predictions, to enhance the robustness of real-time WWTP effluent quality prediction under such events. The developed probabilistic encoder-decoder LSTM (P-ED-LSTM) model was tested in an actual WWTP, where bihourly effluent quality prediction of total nitrogen was performed and compared with classical deep learning models, including LSTM, gated recurrent unit (GRU) and Transformer.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.

View Article and Find Full Text PDF

Passive acoustic monitoring for seabed bubble flows: Case of shallow methane seeps at Laspi Bay (Black Sea).

J Acoust Soc Am

December 2024

Department of Geology and Geochemistry of Fossil Fuels, Faculty of Geology, Moscow State University, Moscow 119991, Russia.

This research quantifies the gas release rate from a natural shallow methane seep site in the Laspi Bay (Black Sea), whose origin is thermocatalytic. An adaptive single bubble identification technique was applied to analyze gas volume and release rates from passive acoustic data. Gas from the seafloor was emitted by single bubbles that occurred in clusters.

View Article and Find Full Text PDF

Most of the microbes in nature infrequently receive nutrients and are thus in slow- or non-growing states. How quickly they can resume their growth upon an influx of new resources is crucial to occupy environmental niches. Isogenic microbial populations are known to harbor only a fraction of cells with rapid growth resumption, yet little is known about the physiological characteristics of those cells and their emergence in the population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!