Background: Historically, the complete removable denture is the last prosthetic procedure to switch to digital techniques whose advantages are mainly observed in the laboratory stages; however, it is not possible to measure the depressibility of the oral mucosa using optical cameras, thus conventional impression techniques are still necessary. This article describes the clinical and laboratory procedure and practitioners appraisal of the first fifteen digitally designed complete removable dental prostheses.

Methods: Several systems are now available including the Wieland® Digital Denture® which offers a complete procedure. This system is composed of a five axis-milling machine combined with a laboratory scanner and a design software application. Fifteen rehabilitations were carried out using the Wieland® system.

Results: The practitioner's role is simplified by intraoral recording with a central point and a reduced number of sessions. The prosthesis laboratory requires considerable investment in learning and equipment, making it possible to obtain ideal mounting assemblies in accordance with the occluso-prosthetic concept of bilateral balanced occlusion. The absence of polymerization and therefore of base deformation risks reduce the equilibration step. Finally, the creation of templates as an alternative to the assembly of teeth on wax makes it possible to functionally validate (masticatory and phonatory) the future dentures. However, this procedure still presented some limitations in terms of scanning and software scope of applications.

Conclusion: Digital denture design software is relatively efficient and helps to standardize clinical results. However, to this date, improvements of the software are still required for a routine use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738680PMC
http://dx.doi.org/10.1186/s12903-017-0440-zDOI Listing

Publication Analysis

Top Keywords

digital denture
8
procedure practitioners
8
practitioners appraisal
8
complete removable
8
design software
8
procedure
5
digital
4
denture procedure
4
appraisal background
4
background historically
4

Similar Publications

Objective: To evaluate the clinical outcomes and define the indications for a one-stage mandibular reconstruction technique that combines iliac bone flaps with immediate implant-based dentures, and to assess both the accuracy of surgical planning and the long-term success of the procedure.

Methods: A total of ten patients underwent the procedure at Peking University Hospital of Stomatology between June 2020 and August 2023. The preoperative biopsy pathology of all the patients confirmed a benign tumor.

View Article and Find Full Text PDF

The present article describes a step-by-step maximally digitalized workflow protocol with computer-aided design and computer-aided manufacturing (CAD/CAM) in partial-arch edentulous patients rehabilitated with fixed dental prostheses and removable partial dentures (FDPs and RPDs). Facial digitalization, intraoral scans, and functional mandibular movement recordings were used to create a 4D virtual patient on commercially available CAD software. The fixed components including post-and-cores, both metal-ceramic with extra-coronal attachment and monolithic zirconia crowns, and the RPDs were manufactured by computer numerical controlled direct milling.

View Article and Find Full Text PDF

Evaluation of Retentive Forces in Three Types of Removable Partial Denture Framework Materials: An In Vitro Study.

Cureus

December 2024

Dentistry, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ.

Introduction The utilization of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in the production of polyetheretherketone (PEEK) and acetal frameworks enhances the precision and stability of partial denture frameworks. This study evaluates the retentive forces of CAD/CAM-fabricated PEEK, acetal, and cobalt-chromium (Co-Cr) frameworks in removable partial dentures (RPDs). Methods Forty-five frameworks were fabricated (15 each of PEEK, acetal, and Co-Cr) and tested for retentive forces using a universal testing machine at a crosshead speed of 5 mm/min.

View Article and Find Full Text PDF

Objectives: The aim of this systematic review and network meta-analysis was to compare the flexural strength of provisional fixed dental prostheses (PFDPs) fabricated using different 3D printing technologies, including digital light processing (DLP), stereolithography (SLA), liquid crystal display (LCD), selective laser sintering (SLS), Digital Light Synthesis (DLS), and fused deposition modeling (FDM).

Materials And Methods: A comprehensive literature search was conducted in databases including PubMed, Web of Science, Scopus, and Open Grey up to September 2024. Studies evaluating the flexural strength of PFDPs fabricated by 3D printing systems were included.

View Article and Find Full Text PDF

Background: The continuous development in digital prosthodontics allowed the customization of attachments and retentive inserts which offers an easy and cheap solution for regular maintenance of locator overdentures during daily practice. The present study compared the change in retention values of the fully digitally manufactured custom-made locator attachment retentive insert with the ready-made ones after insertion, removal, and masticatory cycles.

Methods: A complete denture was constructed over a mandibular edentulous epoxy model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!