Background: Biomechanical factors influence stress in the aortic wall. The aim of this study was to assess how the diameter and shape of the vessel, blood pressure and longitudinal systolic aortic stretching (SAS) caused by the contraction of the myocardium influence stress in the aortic wall.

Methods: Three computational models of the non-dilated aorta and aneurysms of the ascending aorta and aortic root were created. Then, finite elements analyses were carried out. The models were subjected to blood pressure (120 mmHg and 160 mmHg) and longitudinal systolic aortic stretching (0 mm, 5 mm, 10 mm and 15 mm). The influence of wall elasticity was examined too.

Results: Blood pressure had a smaller impact on the stress than the SAS. An increase in blood pressure from120 mmHg to 160 mmHg increased the peak wall stress (PWS) on average by 0.1 MPa in all models. A 5 mm SAS caused a 0.1–0. 2 MPa increase in PWS in all the models. The increase in PWS caused by a 10mm and 15mmSAS was 0.2 MPa and 0. 4 MPa in the non-dilated aorta, 0.2–0.3 MPa and 0.3–0.5 MPa in the aneurysm of the ascending aorta, and 0.1–0.2 MPa and 0.2–0.3 MPa in the aortic root aneurysm model, respectively. The loss of elasticity of the aneurysmal wall resulted in an increase of PWS by 0.1–0.2 MPa.

Conclusions: Aortic geometry, wall stiffness, blood pressure and SAS have an impact on PWS. However, SAS had the biggest impact on wall stress. The results of this study may be useful in future patient-specific computational models used to assess the risk of aortic complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738844PMC
http://dx.doi.org/10.1186/s12872-017-0733-9DOI Listing

Publication Analysis

Top Keywords

blood pressure
20
wall stress
12
ascending aorta
12
increase pws
12
finite elements
8
influence stress
8
aortic
8
stress aortic
8
longitudinal systolic
8
systolic aortic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!