Activation of cannabinoid receptor type 2 has been shown to have anti-fibrosis function in skin and heart. However, whether activating cannabinoid receptor type 2 inhibits pulmonary fibrosis remains elusive. Lung fibroblasts and TGF-β1 are key players in the pathogenesis of pulmonary fibrosis. In this research, we aimed to investigate the role of cannabinoid receptor type 2 in pulmonary fibrosis and . In lung fibroblasts stimulated by TGF-β1, preincubated by cannabinoid receptor type 2 agonist JWH133 not only reduced the elevated levels of collagen I and α-SMA, but also inhibited fibroblasts' proliferation and migration. The dosage of JWH133 had no clear cytotoxic activity, and all these JWH133 effects were partially abrogated by cannabinoid receptor type 2 antagonist SR144528. In bleomycin-induced mice pulmonary fibrosis model, CT images of the lung tissue revealed an extensive ground-glass opacity, reticular pattern and fibrosis stranding. Notably, JWH133 treatment controlled the ongoing fibrotic process (showed by decreased lung density and fibrosis score). Meanwhile, lung histological results revealed that JWH133 treatment suppressed both the inflammatory response and extracellular collagen deposition. SR144528 may increase the pulmonary fibrosis, but no statistically significant difference was proved. Importantly, JWH133 reduced serum profibrotic cytokines levels of TGF-β1 and inhibited TGF-β1/Smad2 pathway and . Our research indicated that activating cannabinoid receptor type 2 by a pharmacological method might be a potential strategy for pulmonary fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5732744 | PMC |
http://dx.doi.org/10.18632/oncotarget.21975 | DOI Listing |
Curr Top Behav Neurosci
January 2025
Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.
In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Charlotte's Web, 700 Tech Court, Louisville, Colorado 80027, United States.
Cannabicyclol ((±)-CBL), a minor phytocannabinoid, is largely unexplored, with its biological activity previously undocumented. We studied its conversion from cannabichromene (CBC) using various acidic catalysts. Montmorillonite (K30) in chloroform at room temperature had the highest yield (60%) with minimal byproducts.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!