Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Grapevine trunk diseases: Eutypa dieback, esca and Botryosphaeria dieback, which incidence has increased recently, are associated with several symptoms finally leading to the plant death. In the absence of efficient treatments, these diseases are a major problem for the viticulture; however, the factors involved in disease progression are not still fully identified. In order to get a better understanding of Botryosphaeria dieback development in grapevine, we have investigated different factors involved in Botryosphaeriaceae fungi aggressiveness. We first evaluated the activity of the wood-degrading enzymes of different isolates of Neofusicoccum parvum and Diplodia seriata, two major fungi associated with Botryosphaeria dieback. We further examinated the ability of these fungi to metabolize major grapevine phytoalexins: resveratrol and δ-viniferin. Our results demonstrate that Botryosphaeriaceae were characterized by differential wood decay enzymatic activities and have the capacity to rapidly degrade stilbenes. N. parvum is able to degrade parietal polysaccharides, whereas D. seriata has a better capacity to degrade lignin. Growth of both fungi exhibited a low sensitivity to resveratrol, whereas δ-viniferin has a fungistatic effect, especially on N. parvum Bourgogne S-116. We further show that Botryosphaeriaceae are able to metabolize rapidly resveratrol and δ-viniferin. The best stilbene metabolizing activity was measured for D. seriata. In conclusion, the different Botryosphaeriaceae isolates are characterized by a specific aggressiveness repertory. Wood and phenolic compound decay enzymatic activities could enable Botryosphaeriaceae to bypass chemical and physical barriers of the grapevine plant. The specific signature of Botryosphaeriaceae aggressiveness factors could explain the importance of fungi complexes in synergistic activity in order to fully colonize the host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737891 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188766 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!