Coastal habitats provide important benefits to people, including habitat for species targeted by fisheries and opportunities for tourism and recreation. Yet, such human activities also can imperil these habitats and undermine the ecosystem services they provide to people. Cumulative risk assessment provides an analytical framework for synthesizing the influence of multiple stressors across habitats and decision-support for balancing human uses and ecosystem health. To explore cumulative risk to habitats in the U.S. Northeast and Mid-Atlantic Ocean Planning regions, we apply the open-source InVEST Habitat Risk Assessment model to 13 habitats and 31 stressors in an exposure-consequence framework. In doing so, we advance the science priorities of EBM and both regional planning bodies by synthesizing the wealth of available data to improve our understanding of human uses and how they affect marine resources. We find that risk to ecosystems is greatest first, along the coast, where a large number of stressors occur in close proximity and secondly, along the continental shelf, where fewer, higher consequence activities occur. Habitats at greatest risk include soft and hard-bottom nearshore areas, tidal flats, soft-bottom shelf habitat, and rocky intertidal zones-with the degree of risk varying spatially. Across all habitats, our results indicate that rising sea surface temperatures, commercial fishing, and shipping consistently and disproportionally contribute to risk. Further, our findings suggest that management in the nearshore will require simultaneously addressing the temporal and spatial overlap as well as intensity of multiple human activities and that management in the offshore requires more targeted efforts to reduce exposure from specific threats. We offer a transparent, generalizable approach to evaluating cumulative risk to multiple habitats and illustrate the spatially heterogeneous nature of impacts along the eastern Atlantic coast and the importance of spatial scale in estimating such impacts. These results offer a valuable decision-support tool by helping to constrain the decision space, focus attention on habitats and locations at the greatest risk, and highlight effect management strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737885 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188776 | PLOS |
JAMA Cardiol
January 2025
Cardiology Division, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
Importance: Apolipoprotein B (apoB) distribution and its implications as an atherosclerotic cardiovascular disease (ASCVD) risk-enhancing factor among individuals of diverse Hispanic or Latino backgrounds have not been described.
Objective: To describe the distribution of apoB in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort and to characterize associations of baseline sociodemographic and clinical variables with apoB and self-identified Hispanic or Latino background.
Design, Setting, And Participants: The HCHS/SOL was a prospective, population-based cohort study of diverse Hispanic or Latino adults living in the US who were recruited and screened between March 2008 and June 2011.
JAMA Otolaryngol Head Neck Surg
January 2025
Department of Plastic Surgery, The University of Texas Southwestern Medical Center, Dallas.
Importance: Facial synkinesis refers to pathologic cocontraction and baseline hypertonicity of muscles innervated by the facial nerve, commonly attributed to the aberrant regeneration of nerve fibers following injury. The pathomechanism and optimal treatment of facial synkinesis remain unclear. The goal of this review is to highlight current understanding of the epidemiology, pathophysiology, clinical presentation, assessment, and treatment of facial synkinesis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.
Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!