Structure of the mechanically activated ion channel Piezo1.

Nature

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA.

Published: February 2018

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010196PMC
http://dx.doi.org/10.1038/nature25453DOI Listing

Publication Analysis

Top Keywords

mechanically activated
8
activated ion
8
ion channels
8
piezo repeats
8
ion
5
structure
4
structure mechanically
4
ion channel
4
channel piezo1
4
piezo1 piezo1
4

Similar Publications

Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia.

Annu Rev Biomed Eng

January 2025

2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:

Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.

View Article and Find Full Text PDF

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

An analytical study of active earth pressure in cohesive soil considering interlayer shear stress.

PLoS One

January 2025

Ltd Project Construction Management Company, Jiangxi Provincial Communications Investment Group Co., Nanchang, China.

The impact of interlayer shear stress on the distribution of earth pressure in cohesive soil is notable, but currently, there lacks a comprehensive theory that integrates this factor in the calculation of active earth pressure. Drawing from the Mohr stress circle specific to clay soils, a formula to calculate interlayer shear stress has been derived. Moreover, a robust model has been formulated to compute the active earth pressure in clay soils, incorporating elements such as interlayer shear stress, effects of displacement, soil arching, and the morphology of the sliding surface.

View Article and Find Full Text PDF

Preparation, Modification, Quantitation, and Dentin Biomodification Activity of Selectively Enriched Proanthocyanidins.

J Nat Prod

January 2025

Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.

To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.

View Article and Find Full Text PDF

In Situ Self-Assembled Naringin/ZIF-8 Nanoparticle-Embedded Bacterial Cellulose Sponges for Infected Diabetic Wound Healing.

ACS Appl Mater Interfaces

January 2025

Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.

The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!