Stability and precise control over functional properties of metal nanoparticles remain a challenge for the realization of prospective applications. Our described process of shell formation and rebuilding can address both these challenges. Template silver nanoparticles (AgNPs) stabilized by poly(styrenesulfonate) are first transformed with gold deposition, after which the resulting shell rebuilds with the replaced silver. The shell formation and rebuilding are accompanied by large shifts in localized surface plasmon resonance (LSPR) peak position, which enables LSPR tuning in a range from 470 to 800 nm. Furthermore, chemical stability of Au-AgNPs is significantly improved compared to AgNPs due to gold stability. Silver templates of different shapes and sizes were demonstrated to transform to AuAg composite NPs to further extend the accessible LSPR range tuning. Stabilization of template AgNPs with poly(styrenesulfonate), in contrast to commonly used poly(vinylpyrrolidone), was found to be a key factor for shell rebuilding. The developed Au-AgNPs were shown to be advantageous for surface plasmon resonance (SPR) detection and surface-enhanced Raman spectroscopy (SERS) owing to their tunable LSPR and enhanced stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b03537 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University, 189 Jiuhua South Road, Wuhu 241003, China.
Integrating metal nanoparticles with vanadium dioxide (VO) is an effective means to realize active plasmonic regulation which has great application potential in optical devices that respond in real-time to external stimuli. However, the high temperature necessary for VO growth severely reshapes the metal nanoparticles, causing reduced refractive index (RI) sensitivity and degraded modulation performance. Herein, we construct a large-area dynamically tunable plasmonic system composed of a VO-covered array of hexagonal gold nanoplates (AuNPLs).
View Article and Find Full Text PDFChemistry
January 2025
Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, 91405, Orsay, France.
Anal Chem
November 2024
Department of Chemistry, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea.
Chemical interface damping (CID) is a newly proposed plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. However, achieving tunability of CID in single gold nanorods (AuNRs) remains a considerable challenge. Here, we present the CID effect induced by benzene 1,2-dithiol (BDT) molecule adsorption on single AuNRs and the effective electrochemical tunability of CID in BDT-adsorbed AuNRs immobilized on an indium tin oxide (ITO) surface.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2024
Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan.
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR.
View Article and Find Full Text PDFACS Omega
August 2024
Department of Chemistry and Bar Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel.
The use of plasmonic particles, specifically, localized surface plasmonic resonance (LSPR), may lead to a significant improvement in the electrical, electrochemical, and optical properties of materials. Chemical modification of the dielectric constant near the plasmonic surface should lead to a shift of the optical resonance and, therefore, the basis for color tuning and sensing. In this research, we investigated the variation of the LSPR by modifying the chemical environment of Ag nanoparticles (NPs) through the complexation of Pt(IV) metal cations near the plasmonic surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!