An Easy-Made, Economical and Efficient Carbon-Doped Amorphous TiO₂ Photocatalyst Obtained by Microwave Assisted Synthesis for the Degradation of Rhodamine B.

Materials (Basel)

Centro de Investigación en Dispositivos Semiconductores, Instituto de Ciencias BUAP, 14 sur y Avenida San Claudio, Ciudad Universitaria, A.P. 196, Puebla 72000, Mexico.

Published: December 2017

The search for novel materials and the development of improved processes for water purification have attracted the interest of researchers worldwide and the use of titanium dioxide in photocatalytic processes for the degradation of organic pollutants contained in water has been one of the benchmarks. Compared to crystalline titanium dioxide (cTiO₂), the amorphous material has the advantages of having a higher adsorption capacity and being easier to dope with metal and non-metal elements. In this work, we take advantage of these two features to improve its photocatalytic properties in the degradation of Rhodamine B. The structural characterization by XRD analysis gives evidence of its amorphous nature and the SEM micrographs portray the disc morphology of 300 nm in diameter with heterogeneous grain boundaries. The degradation of Rhodamine B tests with the amorphous TiO₂ using visible light confirm its improved catalytic activity compared to that of a commercial product, Degussa P25, which is a well-known crystalline material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744382PMC
http://dx.doi.org/10.3390/ma10121447DOI Listing

Publication Analysis

Top Keywords

degradation rhodamine
12
amorphous tio₂
8
titanium dioxide
8
easy-made economical
4
economical efficient
4
efficient carbon-doped
4
amorphous
4
carbon-doped amorphous
4
tio₂ photocatalyst
4
photocatalyst microwave
4

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Carbon Nanosphere-Based TiO Double Inverse Opals.

Molecules

January 2025

Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.

Inverse opals (IOs) are intensively researched in the field of photocatalysis, since their optical properties can be fine-tuned by the initial nanosphere size and material. Another possible route for photonic crystal programming is to stack IOs with different pore sizes. Accordingly, single and double IOs were synthesized using vertical deposition and atomic layer deposition.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation.

Int J Mol Sci

January 2025

Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.

View Article and Find Full Text PDF

Degradation of Rhodamine B dye using the mesoporous material KIT-6/TiO photocatalyst obtained by in situ anchoring method.

Environ Sci Pollut Res Int

January 2025

Department of Chemistry, Laboratory of Catalysis, Environment and Materials, State University of Rio Grande Do Norte, 59610-210, Mossoró, Rio Grande Do Norte, Brazil.

In this study, a novel synthesis approach was employed to create the KIT-6/TiO photocatalyst with different ratios of Si/Ti. The results of the X-ray diffraction revealed that incorporating TiO with the anatase phase maintained the mesoporous structure of KIT-6 (Korean Institute of Technology 6). The scanning electron microscope and transmission electron microscope images exhibited unobstructed mesopores, validating their anchoring within the internal structure of the support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!