Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed () and tobacco () remain unclear. In this study, we identified 20 and 9 genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose) and inositol. Expression profile analysis indicated that and genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of genes in hormone response in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751367PMC
http://dx.doi.org/10.3390/ijms18122768DOI Listing

Publication Analysis

Top Keywords

galactinol synthase
8
family rapeseed
8
rapeseed tobacco
8
genes
6
gols
5
genome-wide identification
4
identification evolutionary
4
expression
4
evolutionary expression
4
expression analyses
4

Similar Publications

Galactinol synthase 4 requires sulfur assimilation pathway to provide tolerance towards arsenic stress under limiting sulphur condition in Arabidopsis.

J Hazard Mater

December 2024

CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002,  India; CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow 226 015, India. Electronic address:

Heavy metalloid stress such as arsenic (As) toxicity and nutrient imbalance constitute a significant threat to plant productivity and development. Plants produce sulfur (S)-rich molecules like glutathione (GSH) to detoxify arsenic, but sulfur deficiency worsens its impact. Previous research identified Arabidopsis thaliana ecotypes Koz2-2 (tolerant) and Ri-0 (sensitive) under low-sulfur (LS) and As(III) stress.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize.

J Genet Genomics

December 2024

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals Genes Responsive to Three Low-Temperature Treatments in .

Plants (Basel)

November 2024

Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A. C., San Luis Potosí, S.L.P. 78216, Mexico.

Cold stress impedes the growth and development of plants, restricts the geographical distribution of plant species, and impacts crop productivity. In this study, we analyzed the transcriptome to identify differentially expressed genes (DEGs) in 14-day-old plantlets exposed to temperatures of 0 °C, 4 °C, and 10 °C for 24 h, compared to the 22 °C control group. Among the top 50 cold-induced genes at each temperature, we identified 31 genes that were common across all three low temperatures, with nine genes common to 0-4 °C, eight genes to 4-10 °C, and two genes to 0-10 °C.

View Article and Find Full Text PDF

Seed vigour and longevity are intricate yet indispensable physiological traits for agricultural crops, as they play a crucial role in facilitating the successful emergence of seedlings and exert a substantial influence on crop productivity. Transcriptional regulation plays an important role in seed development, maturation, and desiccation tolerance, which are important attributes for seed vigour and longevity. Here, we have investigated the regulatory role of the seed-specific DNA-binding with One Finger (DOF) transcription factor and the rice prolamin box binding factor (RPBF) in seed vigour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!