We study the dilute aqueous solutions of poly(ethylene oxide) (PEO) oligomers that are subject to an elongating force dipole acting on both chain ends using atomistic molecular dynamics. By increasing the force, liquid-liquid demixing can be observed at room temperature far below the lower critical solution temperature. For forces above 35 pN, fibrillar nanostructures are spontaneously formed related to a decrease in hydrogen bonding between PEO and water. Most notable is a rapid decrease in the bifurcated hydrogen bonds during stretching, which can also be observed for isolated single chains. The phase-segregated structures display signs of chain ordering, but a clear signature of the crystalline order is not obtained during the simulation time, indicating a liquid-liquid phase transition induced by chain stretching. Our results indicate that the solvent quality of the aqueous solution of PEO depends on the conformational state of the chains, which is most likely related to the specific hydrogen-bond-induced solvation of PEO in water. The strain-induced demixing of PEO opens the possibility to obtain polymer fibers with low energy costs because crystallization starts via the strain-induced demixing in the extended state only.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b10793DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
phase transition
8
polyethylene oxide
8
peo water
8
strain-induced demixing
8
peo
5
dynamics simulations
4
simulations strain-induced
4
strain-induced phase
4
transition polyethylene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!