Our study of the synthesis of the aglycone of tiacumicin B is discussed here. We imagined two possible strategies featuring a main retrosynthetic disconnection between C13 and C14. The first strategy was based on Suzuki-Miyaura cross-coupling of 1,1-dichloro-1-alkenes, but the failure of this pathway led us to use a Pd/Cu-dual-catalyzed cross-coupling of alkynes with allenes that had never been implemented before in a total synthesis context. We used density functional theory calculations to guide our strategic choices concerning a [2.3]-Wittig rearrangement step and the final ring-size selective Yamaguchi macrolactonization. This led to two syntheses of the aglycone of tiacumicin B, with one of last generation delivering ultimately an adequately protected and glycosylation-ready aglycone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b02909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!