Evidence in the literature suggests that listening to music can improve cognitive performance. The aim of the present study was to examine whether the short- and long-term gains of a working memory (WM) training in older adults could be enhanced by music listening-the Mozart's Sonata K448 and the Albinoni's Adagio in G minor-which differ in tempo and mode. Seventy-two healthy older adults (age range: 65-75 years) participated in the study. They were divided into four groups. At each training session, before starting the WM training activities, one group listened to Mozart (Mozart group, N = 19), one to Albinoni (Albinoni group, N = 19), one to white noise (White noise group, N = 16), while one served as an active control group involved in other activities and was not exposed to any music (active control group, N = 18). Specific training gains on a task like the one used in the training, and transfer effects on visuo-spatial abilities, executive function and reasoning measures were assessed. Irrespective of listening condition (Mozart, Albinoni, White noise), trained groups generally outperformed the control group. The White noise group never differed from the two music groups. However, the Albinoni group showed larger specific training gains in the criterion task at short-term and transfer effects in the reasoning task at both short-and long term compared to the Mozart group. Overall the present findings suggest caution when interpreting the effects of music before a WM training, and are discussed according to aging and music effect literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00426-017-0961-8 | DOI Listing |
Behav Processes
January 2025
University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; University of Coimbra, Research Centre for Anthropology and Health, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
Zoo animals are regularly exposed to a plethora of sensorial stimuli beyond their control, which can adversely impact their behaviour and welfare, including unfamiliar faces, excessive noise and intrusive visitor interaction. Zoos have implemented various measures, such as enrichments and regulation of visitor behaviour, to mitigate these effects. However, guided tours have not been used to simultaneously control visitor behaviour and maintain animal welfare.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
Background And Purpose: MRI is crucial for multiple sclerosis (MS), but the relative value of portable ultra-low field MRI (pULF-MRI), a technology that holds promise for extending access to MRI, is unknown. We assessed white matter lesion (WML) detection on pULF-MRI compared to high-field MRI (HF-MRI), focusing on blinded assessments, assessor self-training, and multiplanar acquisitions.
Methods: Fifty-five adults with MS underwent pULF-MRI following their HF-MRI.
Data Brief
February 2025
Institut Camille Jordan, UMR-CNRS 5208, École Centrale de Lyon, 36 Avenue Guy de Collongue, 69134, Écully, France.
The dataset presented contains the experimental structural response, in the frequency domain, of a suspended steel plate to a point force excitation. The plate is excited by a mechanical point force generated by a Brüel & kJær shaker with a white noise signal input from 3.125 Hz to 2000 Hz.
View Article and Find Full Text PDFF-Florbetaben (FBB) uptake in the supratentorial cortex is indicative of amyloid positivity. Due to PET's low spatial resolution, image noise, and spill-over of signal from adjacent white-matter into gray-matter, there are inconsistencies in ratings among trained readers. A set of 264 F-Florbetaben (amyloid) PET/MRI exams were reconstructed using conventional ordered subset expectation maximization (OSEM) method and MR-guided block sequential regularized expectation maximization (MRgBSREM) method.
View Article and Find Full Text PDFIntroduction: This study aims to investigate the impact of auditory input on postural control in young adult cochlear implant users with profound sensorineural hearing loss. The research explores the relationship between auditory cues and static postural stability in individuals with hearing impairment.
Methods: 34 young adult cochlear implant users, consisting of 15 males and 19 females aged 18-35 years, underwent various balance tests, including the modified Clinical Tests of Sensory Interaction on Balance (mCTSIB) and the Unilateral Stance Test (UST), under different auditory conditions: (1) White noise stimulus present with the sound processor activated, (2) Ambient noise present with the sound processor activated, and (3) Sound processor deactivated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!