Synthesis and Evaluation of Radiolabeled Phosphoramide Mustard with Selectivity for Hypoxic Cancer Cells.

ACS Med Chem Lett

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, Nebraska 68198, United States.

Published: December 2017

Tumor hypoxia has been widely explored over the years as a diagnostic and therapeutic marker. Herein, we synthesized an alkyne functionalized version of evofosfamide, a hypoxia-selective prodrug. The purpose of this effort was to investigate if this novel 2-nitroimidazole phosphoramide nitrogen mustard (2-NIPAM) retained hypoxia selectivity and could be utilized in radiopharmaceutical development to significantly increase retention of conjugated agents in hypoxic cells. 2-NIPAM demonstrated good hypoxia selectivity with a 62- and 225-fold increase in cytotoxicity toward PC-3 and DU145 human prostate cancer cell lines, respectively, under hypoxic conditions. Radiolabeling of 2-NIPAM with I was accomplished through a Cu(I)-mediated azide-alkyne cycloaddition reaction. The I-conjugate demonstrated 13.6 and 17.8% lower efflux rates for DU145 and PC-3 cells, correspondingly, under hypoxic conditions, suggesting that the increased retention is likely due to the known intracellular trapping mechanism. In conclusion, these studies demonstrate the potential of 2-NIPAM in serving as a trapping agent for radiopharmaceutical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5733275PMC
http://dx.doi.org/10.1021/acsmedchemlett.7b00355DOI Listing

Publication Analysis

Top Keywords

hypoxia selectivity
8
radiopharmaceutical development
8
hypoxic conditions
8
synthesis evaluation
4
evaluation radiolabeled
4
radiolabeled phosphoramide
4
phosphoramide mustard
4
mustard selectivity
4
hypoxic
4
selectivity hypoxic
4

Similar Publications

Inhibiting autophagy selectively prunes dysfunctional tumor vessels and optimizes the tumor immune microenvironment.

Theranostics

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan Province, People's Republic of China.

Dysfunctional tumor vasculature, hypoxia, and an immunosuppressive microenvironment are significant barriers to effective cancer therapy. Autophagy, which is critical for maintaining cellular homeostasis and apoptosis resistance, is primarily triggered by hypoxia and nutrient deprivation, conditions prevalent in dysfunctional tumor vessels due to poor circulation. However, the role of autophagy in dysfunctional tumor endothelial cells and its impact on treatment and the tumor microenvironment (TME) remain poorly understood.

View Article and Find Full Text PDF

Oral administration of pioglitazone inhibits pulmonary hypertension by regulating the gut microbiome and plasma metabolome in male rats.

Physiol Rep

January 2025

Department of Laboratory Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, China.

The oral administrated thiazolidinediones (TZDs) have been widely reported to alleviate experimental pulmonary hypertension (PH). However, previous studies mainly focused on their beneficial effects on the cardiopulmonary vascular system but failed to determine their potential roles on gut microenvironment. This study aims to investigate the effects of pioglitazone, an oral TZD drug, on gut microbiome in classic PH rat models induced by hypoxia (HPH) or SU5416/hypoxia (SuHx-PH) and evaluate the therapeutic potential of supplementation of selective probiotics for experimental PH.

View Article and Find Full Text PDF

The sustainability of livestock systems is widely acknowledged to be threatened by climate change on a worldwide scale. There are worries about the effects this phenomenon may have on the productivity and performance of native livestock species due to its influence on environmental stresses, such as the frequency and severity of unfavorable weather occurrences and the ongoing changes in the agro-ecological landscape. Among the most climatically tolerant livestock animals, goats can survive in a range of environments, from deserts to alpine areas.

View Article and Find Full Text PDF

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!