Bilirubin is a highly-hydrophobic tetrapyrrole which binds to plasma albumin. It is conjugated in the liver to glucuronic acid, and the water-soluble glucuronides are excreted in urine and bile. The membrane transporters of bilirubin diglucuronide are well-known. Still undefined are however the transporters performing the uptake of bilirubin from the blood into the liver, a process known to be fast and not rate-limited. The biological importance of this process may be appraised by considering that in normal adults 200-300 mg of bilirubin are produced daily, as a result of the physiologic turnover of hemoglobin and cellular cytochromes. Nevertheless, research in this field has yielded controversial and contradicting results. We have undertaken a systematic review of the literature, believing in its utility to improve the existing knowledge and promote further advancements. We have sourced the PubMed database until 30 June 2017 by applying 5 sequential searches. Screening and eligibility criteria were applied to retain research articles reporting results obtained by using bilirubin molecules in membrane transport assays or by assessing serum bilirubin levels in experiments. We have identified 311 articles, retaining 44, reporting data on experimental models having 6 incremental increases of complexity (isolated proteins, membrane vesicles, cells, organ fragments, rodents, and human studies), demonstrating the function of 19 membrane transporters, encoded by either or genes. Three other bilirubin transporters have no gene, though one, i.e., bilitranslocase, is annotated in the Transporter Classification Database. This is the first review that has systematically examined the membrane transporters for bilirubin and its conjugates. Paradoxically, the remarkable advancements in the field of membrane transport of bilirubin have pointed to the elusive mechanism(s) enabling bilirubin to diffuse into the liver as if no cellular boundary existed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723324 | PMC |
http://dx.doi.org/10.3389/fphar.2017.00887 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany.
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.
View Article and Find Full Text PDFFree Radic Res
January 2025
Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.
View Article and Find Full Text PDFCurr Alzheimer Res
January 2025
Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Fujian, 361000, China.
Introduction: Muscarinic 1 acetylcholine receptor (M1AChR) is a member of the Gprotein- coupled receptor superfamily, with the dysfunction being linked to the onset of Alzheimer's Disease (AD).
Aims: Retromer complex with Vacuolar Protein Sorting-35 (VPS35) as the core plays an important role in the transport of biological proteins and has been confirmed to be closely related to the pathogenesis of AD. This study was designed to determine whether VPS35 could affect the trafficking mechanism of M1AChRs.
Physiol Rep
February 2025
Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany.
The zona glomerulosa (ZG) synthesizes the mineralocorticoid aldosterone. The primary role of aldosterone is the maintenance of volume and electrolyte homeostasis. Aldosterone synthesis is primarily regulated via tightly controlled oscillations in intracellular calcium levels in response to stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!