A 100,000 Scale Factor Radar Range.

Sci Rep

College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, AZ, 85721, USA.

Published: December 2017

The radar cross section of an object is an important electromagnetic property that is often measured in anechoic chambers. However, for very large and complex structures such as ships or sea and land clutters, this common approach is not practical. The use of computer simulations is also not viable since it would take many years of computational time to model and predict the radar characteristics of such large objects. We have now devised a new scaling technique to overcome these difficulties, and make accurate measurements of the radar cross section of large items. In this article we demonstrate that by reducing the scale of the model by a factor 100,000, and using near infrared wavelength, the radar cross section can be determined in a tabletop setup. The accuracy of the method is compared to simulations, and an example of measurement is provided on a 1 mm highly detailed model of a ship. The advantages of this scaling approach is its versatility, and the possibility to perform fast, convenient, and inexpensive measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5736634PMC
http://dx.doi.org/10.1038/s41598-017-18131-1DOI Listing

Publication Analysis

Top Keywords

radar cross
12
radar
5
100000 scale
4
scale factor
4
factor radar
4
radar range
4
range radar
4
cross object
4
object electromagnetic
4
electromagnetic property
4

Similar Publications

Background: While the benefits of decent work-employment that respects fundamental human rights, ensures fair income, guarantees workplace security, and provides social protection for families-have recently gained scholarly attention regarding job satisfaction, psychological empowerment, and work engagement, its potential to enhance nurses' work ability-defined as the ability to carry out job responsibilities-remains unaddressed. Furthermore, a gap exists in understanding the mechanisms through which decent work influences its outcomes.

Purpose: We aimed to investigate: (1) if securing decent work is associated with elevated nurses' work ability, and (2) if perceived insider status and psychological well-being mediate the association between decent work and nurses' work ability.

View Article and Find Full Text PDF

The French Agency for Food, Environmental and Occupational Health & Safety (Anses) has set up a multidisciplinary working group (WG) to develop an innovative One Health approach for the monitoring and evaluation of an integrated vector management system (IVMS) on a territorial scale. Four existing evaluation guidelines and methods have been combined into a semi-quantitative evaluation approach that takes into account all the dimensions of an integrated process. We propose a set of 34 criteria divided into three sections (objectives and management, implementation, integration) that correspond to the main functional components of an IVMS.

View Article and Find Full Text PDF

Multi-Band Scattering Characteristics of Miniature Masson Pine Canopy Based on Microwave Anechoic Chamber Measurement.

Sensors (Basel)

December 2024

Laboratory of Target Microwave Properties, Deqing Academy of Satellite Applications, Deqing 313200, China.

Using microwave remote sensing to invert forest parameters requires clear canopy scattering characteristics, which can be intuitively investigated through scattering measurements. However, there are very few ground-based measurements on forest branches, needles, and canopies. In this study, a quantitative analysis of the canopy branches, needles, and ground contribution of Masson pine scenes in C-, X-, and Ku-bands was conducted based on a microwave anechoic chamber measurement platform.

View Article and Find Full Text PDF

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

In shooting incident reconstructions, forensic examiners usually deal with scenes involving short-range trajectories, typically ≤30 m. In situations such as this, a linear trajectory reconstruction model is appropriate. However, a forensic expert can also be asked to estimate a shooter's position by reconstructing a long-range trajectory where the bullet's path becomes arced as a result of gravity and the greater time in flight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!