Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, due to homozygous mutations or deletions in the telomeric survival motoneuron gene 1 (SMN1). SMA is characterized by motor impairment, muscle atrophy, and premature death following motor neuron (MN) degeneration. Emerging evidence suggests that dysregulation of autophagy contributes to MN degeneration. We here investigated the role of autophagy in the SMNdelta7 mouse model of SMA II (intermediate form of the disease) which leads to motor impairment by postnatal day 5 (P5) and to death by P13. We first showed by immunoblots that Beclin 1 and LC3-II expression levels increased in the lumbar spinal cord of the SMA pups. Electron microscopy and immunofluorescence studies confirmed that autophagic markers were enhanced in the ventral horn of SMA pups. To clarify the role of autophagy, we administered intracerebroventricularly (at P3) either an autophagy inhibitor (3-methyladenine, 3-MA), or an autophagy inducer (rapamycin) in SMA pups. Motor behavior was assessed daily with different tests: tail suspension, righting reflex, and hindlimb suspension tests. 3-MA significantly improved motor performance, extended the lifespan, and delayed MN death in lumbar spinal cord (10372.36 ± 2716 MNs) compared to control-group (5148.38 ± 94 MNs). Inhibition of autophagy by 3-MA suppressed autophagosome formation, reduced the apoptotic activation (cleaved caspase-3 and Bcl2) and the appearance of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive neurons, underlining that apoptosis and autophagy pathways are intricately intertwined. Therefore, autophagy is likely involved in MN death in SMA II, suggesting that it might represent a promising target for delaying the progression of SMA in humans as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870600PMC
http://dx.doi.org/10.1038/s41419-017-0086-4DOI Listing

Publication Analysis

Top Keywords

sma pups
12
inhibition autophagy
8
mouse model
8
spinal muscular
8
muscular atrophy
8
sma
8
motor impairment
8
autophagy
8
role autophagy
8
lumbar spinal
8

Similar Publications

Introduction: Congenital diaphragmatic hernia (CDH) is a complex congenital disorder, characterized by pulmonary hypertension (PH) and hypoplasia. PH secondary to CDH (CDH-PH) features devastating morbidity and mortality (25-30%) among neonates. An unmet need is determining mechanisms triggering CDH-PH to save infants.

View Article and Find Full Text PDF

Background: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue.

View Article and Find Full Text PDF

No significant sex differences in incidence or phenotype for the SMNΔ7 mouse model of spinal muscular atrophy.

Neuromuscul Disord

April 2024

Delaware State University, Department of Biological Sciences, 1200 N Dupont Highway, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA. Electronic address:

Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how exposure to nonylphenol (NP) during the perinatal period affects heart fibrosis in adult rat offspring and highlights the role of the TGF-β1/LIMK1 signaling pathway.
  • Histopathological results showed increased collagen levels and impaired heart function in NP-exposed rats, with various fibrosis-related proteins and genes being upregulated.
  • The findings suggest that NP exposure activates the TGF-β1/LIMK1 pathway, contributing to myocardial fibrosis in cardiac fibroblasts, and the use of a LIMK1 inhibitor was able to reduce this effect.
View Article and Find Full Text PDF

Pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed endometrial stem cells (EnSCs) are reported in mouse uterus. They express gonadal and gonadotropin hormone receptors and thus are vulnerable to early-life endocrine insults. Neonatal exposure of mouse pups to endocrine disruption cause stem/progenitor cells to undergo epigenetic changes, excessive self-renewal, and blocked differentiation that results in various uteropathies including non-receptive endometrium, hyperplasia, endometriosis, adenomyosis, and cancer-like changes in adult life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!