The UbiD family of reversible decarboxylases act on aromatic, heteroaromatic, and unsaturated aliphatic acids and utilize a prenylated flavin mononucleotide (prFMN) as cofactor, bound adjacent to a conserved Glu-Arg-Glu/Asp ionic network in the enzyme's active site. It is proposed that UbiD activation requires oxidative maturation of the cofactor, for which two distinct isomers, prFMN and prFMN, have been observed. It also has been suggested that only the prFMN form is relevant to catalysis, which requires transient cycloaddition between substrate and cofactor. Using Fdc1 as a model system, we reveal that isomerization of prFMN to prFMN is a light-dependent process that is largely independent of the Glu-Arg-Glu network and accompanied by irreversible loss of activity. On the other hand, efficient catalysis was highly dependent on an intact Glu-Arg-Glu network, as only Glu → Asp substitutions retain activity. Surprisingly, oxidative maturation to form the prFMN species is severely affected only for the R173A variant. In summary, the unusual irreversible isomerization of prFMN is light-dependent and probably proceeds via high-energy intermediates but is independent of the Glu-Arg-Glu network. Our results from mutagenesis, crystallographic, spectroscopic, and kinetic experiments indicate a clear role for the Glu-Arg-Glu network in both catalysis and oxidative maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818171PMC
http://dx.doi.org/10.1074/jbc.RA117.000881DOI Listing

Publication Analysis

Top Keywords

oxidative maturation
16
glu-arg-glu network
16
prenylated flavin
8
flavin mononucleotide
8
maturation cofactor
8
prfmn
8
prfmn prfmn
8
isomerization prfmn
8
prfmn light-dependent
8
independent glu-arg-glu
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!