Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777083PMC
http://dx.doi.org/10.1073/pnas.1719674115DOI Listing

Publication Analysis

Top Keywords

neural plate
16
head mesoderm
12
plate border
8
neural
5
neural induction
4
induction node
4
node placode
4
placode induction
4
induction head
4
mesoderm share
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!