Serotonin-containing neurons in the brain of the weak-electric fish Gnathonemus petersii (mormyridae, teleostei) were studied with the aid of immunohistochemical labeling. Study of the central serotoninergic innervation was focused on the structures subserving the command of the electric organ and the first central relay of the electrosensory system. In the midline raphe nuclei, serotoninergic neurons formed a column that stretched from the ventral caudal medulla to the dorsal midbrain, ending caudal to the cerebellar peduncle. In the dorsal tegmentum, serotoninergic neurons were found bilaterally at the anterior margin of the decussation of the lateral lemniscus. Labeled neurons were also present bilaterally immediately anterior to the cerebellar peduncle and also in the pretectal region. In the hypothalamus, many serotoninergic neurons were in contact with the ventricular wall, and a few were present in the preoptic area. This distribution of serotoninergic cell bodies showed many similarities to that in other fish and higher vertebrates but lacked the lateral spread of the serotoninergic raphe system found in the midbrain tegmentum in mammals. Labeled fibers were found in both the preelectromotor medullary relay nucleus and the electromotor command nucleus. These serotoninergic projections were traced to the posterior raphe. Serotoninergic fibers also formed a dense network in the cortex and in the nucleus of the electrosensory lobe, both of which receive primary input from electroreceptors. These results suggest that serotonin may have a role in the modulation of the intrinsic, rhythmic electromotor command and in the gating of electrosensory input.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.902810109DOI Listing

Publication Analysis

Top Keywords

serotoninergic neurons
16
serotoninergic
9
cerebellar peduncle
8
neurons bilaterally
8
bilaterally anterior
8
electromotor command
8
neurons
5
neurons mormyrid
4
mormyrid brain
4
brain projection
4

Similar Publications

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Serotonergic Mechanisms in Proteinoid-Based Protocells.

ACS Chem Neurosci

January 2025

Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.

This study examines the effects of incorporating serotonin (5-HT) into proteinoid microspheres. It looks at the microspheres' structure and electrochemical properties. Proteinoid-serotonin assemblies have better symmetry and membrane organization than pristine proteinoids.

View Article and Find Full Text PDF

The serotonergic raphe magnus (RMg) and dorsal raphe (DR) nuclei are crucial pain-regulating structures, which nociceptive activity is shown to be altered in gut pathology, but the underlying neuroplastic changes remain unclear. Considering the importance of 5-HT1A receptors in modulating both pain and raphe neuronal activity, in this study, we aimed to determine whether 5-HT1A-dependent visceral and somatic nociceptive processing within the RMg and DR is modified in postcolitis conditions. In anaesthetised male Wistar rats, healthy control and recovered from TNBS-induced colitis, the microelectrode recordings of RMg and DR neuron responses to noxious colorectal distension (CRD) or tail squeezing (TS) were performed prior and after intravenous administration of 5-HT1A agonist, buspirone.

View Article and Find Full Text PDF

Effect of antidepressants and social defeat stress on the activity of dorsal raphe serotonin neurons in free-moving animals.

J Pharmacol Sci

February 2025

Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan; Project for Neural Networks, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan. Electronic address:

Major depressive disorder (MDD) is among the most common mental disorders worldwide and is characterized by dysregulated reward processing associated with anhedonia. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD; however, their onset of action is delayed. Recent reports have shown that serotonin neurons in the dorsal raphe nucleus (DRN) are activated by rewards and play a vital role in reward processing.

View Article and Find Full Text PDF

Behavioral and molecular neurotoxicity of thermally degraded polystyrene in Caenorhabditis elegans.

J Hazard Mater

January 2025

Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address:

Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!