Background: It is well known that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the control of pathogens and microbiota in insects. However, the knowledge of the role of ROS and RNS in tick-pathogen and tick-microbiota interactions is limited. Here, we evaluated the immune-related redox metabolism of the embryonic cell line BME26 from the cattle tick Rhipicephalus microplus in response to Anaplasma marginale infection.

Methods: A high-throughput qPCR approach was used to determine the expression profile of 16 genes encoding proteins involved in either production or detoxification of ROS and RNS in response to different microbial challenges. In addition, the effect of RNAi-mediated gene silencing of catalase, glutathione peroxidase, thioredoxin and protein oxidation resistance 1 in the control of infection with A. marginale was evaluated.

Results: Infection with A. marginale resulted in downregulation of the genes encoding ROS-generating enzymes dual oxidase and endoplasmic reticulum oxidase. In contrast, the genes encoding the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, thioredoxin reductase and peroxiredoxin were upregulated. The gene expression pattern in response to infection with Rickettsia rickettsii and exposure to heat-killed microorganisms, Micrococcus luteus, Enterobacter cloacae or S. cerevisiae was the opposite of that triggered by A. marginale challenge. The simultaneous silencing of three genes, catalase, glutathione peroxidase, and thioredoxin as well as the oxidation resistance 1 gene by RNAi apparently favoured the colonization of BME26 cells by A. marginale, suggesting that the antioxidant response might play a role in the control of infection.

Conclusions: Taken together, our results suggest that a general response of tick cells upon microbial stimuli is to increase ROS/RNS production. In contrast, A. marginale infection triggers an opposite profile, suggesting that this pathogen might manipulate the tick redox metabolism to evade the deleterious effect of the oxidant-based innate immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5738103PMC
http://dx.doi.org/10.1186/s13071-017-2575-9DOI Listing

Publication Analysis

Top Keywords

redox metabolism
12
genes encoding
12
catalase glutathione
12
glutathione peroxidase
12
immune-related redox
8
metabolism embryonic
8
tick rhipicephalus
8
rhipicephalus microplus
8
response infection
8
anaplasma marginale
8

Similar Publications

Evaluation the protective role of baicalin against HO-driven oxidation, inflammation and apoptosis in bovine mammary epithelial cells.

Front Vet Sci

December 2024

Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.

Mastitis is one of the most common diseases in dairy farms. During the perinatal period, the bovine mammary epithelial cells (BMECs) of High-yielding dairy cows accelerate metabolism and produce large amounts of reactive oxygen species (ROS). It is one of the primary causes of mastitis and will lead to the breakdown of redox balance, which will induce oxidative stress, inflammation, and apoptosis.

View Article and Find Full Text PDF

In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signaling by oxidising crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM).

View Article and Find Full Text PDF

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Objectives: To investigate the therapeutic effect of Exocarpium Citri Grandis formula granules (ECGFG) on fatty liver disease (FLD) in zebrafish and explore the underlying mechanism.

Methods: Nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD) models were established in zebrafish larvae at 3 days post fertilization (dpf), in which the treatment efficacy of 16, 32, or 64 μg/mL ECGFG was evaluated by examining zebrafish survival and liver pathologies and using whole-fish oil red O staining and RT-qPCR. The therapeutic mechanism of ECGFG for FLD was investigated using Prussian blue staining, DCFH-DA probe, MDA content detection, RT-qPCR assay and immunohistochemical staining for CAV1.

View Article and Find Full Text PDF

Introduction: People with cystic fibrosis (PwCF) are at high risk for developing cystic fibrosis (CF)-related diabetes (CFRD), which worsens morbidity and mortality. Although the pathological events leading to the development of CFRD are complex and not completely understood, dietary factors may play a role. For example, habitual intake of dietary added sugar (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!