Background: Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy.
Methods: By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord.
Results: In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX isoforms isolated from the central nervous system tissue (amygdala, hippocampus, spinal cord) was revealed. Stevia exhibits an antistress, membrane-stabilizing role reducing the level of total fractions of NOX isoforms from central nervous system tissues and regulates NADPH-dependent O -producing activity.
Conclusion: Generally, in condition of metabolic disorders caused by intensive consumption of dietary fructose Stevia leaves contributes to the control of neuronal synaptic plasticity possibly influencing the conjugated NOX-specific targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735878 | PMC |
http://dx.doi.org/10.1186/s12906-017-2049-9 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy.
Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
View Article and Find Full Text PDFJ Mol Biol
January 2025
Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:
Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619; Shanxi Provincial Key Laboratory of TCM Encephalopathy; National International Joint Research Center for Molecular Traditional Chinese Medicine. Electronic address:
Ethnopharmacological Relevance: Dihuang Drink (DHD), formulated by Liu Hejian during the Yuan Dynasty, is listed as one of the first ancient classical prescriptions by the National Medical Products Administration of China. It is commonly used for the prevention and treatment of Alzheimer's disease (AD). This study further investigates the therapeutic effects and potential mechanisms of DHD in AD.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!