Lipid-coated calcium phosphate nanoparticle and beyond: a versatile platform for drug delivery.

J Drug Target

a Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine , Shanghai Jiao Tong University School of Medicine, Shanghai , PR China.

Published: July 2019

In recent years, lipid-coated calcium-phosphate (LCP) nanoparticle has been developed as a versatile platform for delivery of various therapeutics including gene, protein/peptide, chemotherapeutics and theranostic agents. The high endosomal escape, coupled with the ability to efficiently encapsulate phosphorylated drugs or prodrugs, make LCP become attractive vehicle for drug delivery. Additionally, the principle behind LCP formulation has also allowed rational design of LCP-derived nanoparticles (NPs) with other solid core or lipid membrane to overcome the various drug delivery barriers. Here, we briefly review the history of the development of LCP NPs, highlight the optimisations and modulations in the development process, and summarise the major applications of LCP NPs and LCP-derived NPs in drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2017.1419360DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
versatile platform
8
lcp nps
8
delivery
5
lcp
5
lipid-coated calcium
4
calcium phosphate
4
phosphate nanoparticle
4
nanoparticle versatile
4
drug
4

Similar Publications

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Background: Scotland currently has amongst the highest rates of drug-related deaths in Europe, leading to increased advocacy for safer drug consumption facilities (SDCFs) to be piloted in the country. In response to concerns about drug-related harms in Edinburgh, elected officials have considered introducing SDCFs in the city. This paper presents key findings from a feasibility study commissioned by City of Edinburgh Council to support these deliberations.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!