Opening of the human epithelial calcium channel TRPV6.

Nature

Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA.

Published: January 2018

Calcium-selective transient receptor potential vanilloid subfamily member 6 (TRPV6) channels play a critical role in calcium uptake in epithelial tissues. Altered TRPV6 expression is associated with a variety of human diseases, including cancers. TRPV6 channels are constitutively active and their open probability depends on the lipidic composition of the membrane in which they reside; it increases substantially in the presence of phosphatidylinositol 4,5-bisphosphate. Crystal structures of detergent-solubilized rat TRPV6 in the closed state have previously been solved. Corroborating electrophysiological results, these structures demonstrated that the Ca selectivity of TRPV6 arises from a ring of aspartate side chains in the selectivity filter that binds Ca tightly. However, how TRPV6 channels open and close their pores for ion permeation has remained unclear. Here we present cryo-electron microscopy structures of human TRPV6 in the open and closed states. The channel selectivity filter adopts similar conformations in both states, consistent with its explicit role in ion permeation. The iris-like channel opening is accompanied by an α-to-π-helical transition in the pore-lining transmembrane helix S6 at an alanine hinge just below the selectivity filter. As a result of this transition, the S6 helices bend and rotate, exposing different residues to the ion channel pore in the open and closed states. This gating mechanism, which defines the constitutive activity of TRPV6, is, to our knowledge, unique among tetrameric ion channels and provides structural insights for understanding their diverse roles in physiology and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854407PMC
http://dx.doi.org/10.1038/nature25182DOI Listing

Publication Analysis

Top Keywords

trpv6 channels
12
selectivity filter
12
trpv6
9
ion permeation
8
open closed
8
closed states
8
opening human
4
human epithelial
4
epithelial calcium
4
channel
4

Similar Publications

Prebiotics as modulators of colonic calcium and magnesium uptake.

Acta Physiol (Oxf)

February 2025

Institute for Molecular Medicine, Health and Medical University Potsdam, Potsdam, Germany.

Ca and Mg are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca and Mg can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca and Mg from supplements is significantly lower than that from milk products.

View Article and Find Full Text PDF

The Molecular Biology of Placental Transport of Calcium to the Human Foetus.

Int J Mol Sci

January 2025

Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.

From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.

View Article and Find Full Text PDF

Overexpression of TRPV6 Inhibits Coronary Atherosclerosis-Related Inflammatory Response and Cell Apoptosis via the PKA/UCP2 Pathway.

Cardiovasc Ther

January 2025

Department of Cardiovascular Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi Province 030032, China.

This research is aimed at unravelling the intricate relationship between transient receptor potential vanilloid 6 (TRPV6), protein kinase A (PKA), uncoupling protein 2 (UCP2), and atherosclerosis. By shedding light on the role of the TRPV6/PKA/UCP2 pathway in inhibiting inflammatory response and cell apoptosis in coronary atherosclerotic plaques, this study provides valuable insights into potential therapeutic targets for treating coronary artery disease (CAD). We established animal and cell models of atherosclerosis.

View Article and Find Full Text PDF

The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression.

Biochim Biophys Acta Rev Cancer

November 2024

University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy. Electronic address:

Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases.

View Article and Find Full Text PDF

Structure-function analyses of human TRPV6 ancestral and derived haplotypes.

Structure

January 2025

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. Electronic address:

TRPV6 is a Ca selective channel that mediates calcium uptake in the gut and contributes to the development and progression of human cancers. TRPV6 is represented by the ancestral and derived haplotypes that differ by three non-synonymous polymorphisms, located in the N-terminal ankyrin repeat domain (C157R), S1-S2 extracellular loop (M378V), and C-terminus (M681T). The ancestral and derived haplotypes were proposed to serve as genomic factors causing a different outcome for cancer patients of African ancestry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!