Troxerutin, a mixture of O-hydroxyethyl derivatives of the natural flavonoid rutin: Chemical stability and analytical aspects.

J Pharm Biomed Anal

Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy. Electronic address:

Published: February 2018

AI Article Synopsis

  • Troxerutin (TRX) is a semi-synthetic compound derived from rutin, valued for its antioxidant and anti-inflammatory properties, and is being investigated for potential benefits in conditions like Alzheimer's and various cancers.* -
  • This study focused on assessing the chemical stability of TRX through forced degradation tests, identifying three degradation products (D1, D2, D3), with D1 being a key stability indicator under acidic conditions.* -
  • A new stability-indicating LC-UV method was developed for simultaneously measuring TRX's main component (triHer) and degradation product D1, showing high precision, accuracy, and robustness in its results.*

Article Abstract

Troxerutin (TRX) is a mixture of semisynthetic hydroxyethylrutosides (Hers) arising from hydroxyethylation of rutin, a natural occurring flavonoid. TRX is commonly used for its anti-oxidant and anti-inflammatory properties in chronic venous insufficiency and other vascular disorders. In recent studies, the protective effects of TRX in Alzheimer's disease, colon carcinogenesis and hepatocellular carcinoma are emerged. However, the chemical stability of TRX has never been studied. Hence, the aims of the work were to study the TRX chemical stability through a forced degradation study and to develop and validate a new stability indicating LC-UV method for determination of TRX. In order to perform the study, TRX stability was tested in various stress conditions analysing the degradation samples by LC-MS. Three degradation products (DPs; D1, D2 and D3, 3',4',7-Tri-O-(β-hydroxyethyl)quercetin, 3',4',5,7-Tetra-O-(β-hydroxyethyl)quercetin and 3',4'-Di-O-(β-hydroxyethyl)quercetin respectively) arising from degradation in acidic conditions were identified and synthesized: among them, D1 resulted the stability indicator for hydrolytic degradation. Furthermore, a stability-indicating LC-UV method for simultaneous determination of triHer (3',4',7-Tri-O-(β-hydroxyethyl)rutin, the principal component of the mixture) and D1 was developed and validated. The LC-UV method consisted in a gradient elution on a Phenomenex Kinetex EVO C18 (150 × 3 mm, 5 μm) with acetonitrile and ammonium bicarbonate buffer (10 mM, pH 9.2). The method was linear for triHer (20-60 μg mL) and D1 (5.1-35 μg mL). The intraday and interday precision were determined and expressed as RSDs: all the values were ≤ 2% for both triHer and D1. The method demonstrated also to be accurate and robust and the average recoveries were 98.8 and 97.9% for triHer and D1, respectively. Moreover, the method resulted selective and specific for all of the components present in the degradation pattern of TRX (diHer (3',4'-Di-O-(β-hydroxyethyl)rutin), triHer, tetraHer (3',4',5,7-Tetra-O-(β-hydroxyethyl)rutin), D3, D1 and D2) and it was successfully applied for the stability studies of both drug substances and drug products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2017.12.018DOI Listing

Publication Analysis

Top Keywords

chemical stability
12
lc-uv method
12
trx
8
study trx
8
triher method
8
stability
7
degradation
6
method
6
triher
5
troxerutin mixture
4

Similar Publications

Cathodic Deoxygenative Alkylation of Nitro(hetero)arenes with Organic Halides.

Org Lett

January 2025

School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, P. R. China.

We have realized a cathodic deoxygenative alkylation between nitro(hetero)arenes and organic halides, employing bis(pinacolato)diboron (Bpin) and LiCl as additives to trap and stabilize the generated alkyl radicals and carbanions, thereby facilitating efficient N-O cleavage and selective C-N bond formation. The protocol offers an economical method for the efficient synthesis of multiple aromatic(hetero) amines, without the need for reactive reductants and the exclusion of air and moisture. Notably, the protocol is distinguished by scalability, broad functional group compatibility, and safe and mild conditions, demonstrating practicality in the synthesis and late-stage modification of various bioactive compounds.

View Article and Find Full Text PDF

Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.

View Article and Find Full Text PDF

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!