Essential oils, such as those isolated from cinnamon, are effective natural antimicrobial agents, but their utilization is limited by their low water-solubility. In this study, phase inversion temperature (PIT) was used to prepare cinnamon oil nanoemulsions. To this aim, it was hypothesized that cinnamon oil nanoemulsions could be fabricated by optimizing the oil phase composition and surfactant concentration of the system and their stability could be enhanced using a cooling-dilution method during the PIT. A mixture of cinnamon oil, non-ionic surfactant, and water was heated above the PIT of the system, and then rapidly cooled with continuous stirring, which led to the spontaneous generation of small oil droplets. The impact of oil phase composition and surfactant concentration on the formation and stability of the nanoemulsions was determined. Cinnamon oil nanoemulsions with the smallest mean droplet diameter (101 nm) were formed using 40:60 wt% of cinnamon oil and medium chain triglyceride (MCT) in the total lipid phase. Increasing surfactant concentration significantly decreased the mean droplet diameter of the nanoemulsions but did not alter their particle morphology. In addition, using the cooling-dilution method, the nanoemulsions were stable for at least 31 days when stored at 4 °C or 25 °C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2017.11.084 | DOI Listing |
Int J Biol Macromol
January 2025
Technology Innovation Center of Natural Fragrances and Flavors, State Administration for Market Regulation, People's Republic of China.
Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Cinnamon is a widely used spice, known for its distinctive flavor and aromatic properties. Due to its lignified structure, the release of flavor components typically requires prolonged stewing (1-2 h). To simulate the release of flavor components during stewing, this study employed corn oil for extraction, avoiding the use of organic solvents.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
Faculty of Archaeology, South Valley University, Qena, Egypt.
The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
PRISM, Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, Co., Dublin Rd, N37 HD68 Westmeath, Ireland.
The escalating global concern regarding plastic waste accumulation and its detrimental environmental impact has driven the exploration of sustainable alternatives to conventional petroleum-based plastics. This study investigates the development of antimicrobial blends of bacterial nanocellulose (BNC) derived from plastic waste and polyhydroxyalkanoates (PHB), further enhanced with essential oils. The antimicrobial activity of the resulting BNC/PHB blends was tested in vitro against , , and .
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China.
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!