Muscle synergy describes reduced set of functional muscle co-activation patterns. We aimed to identify muscle synergies of turning compared with straight walking. Twelve healthy adults (men: 7, women: 5) performed straight walking (SW), left turning (LT), and right turning (RT) at self-selected speeds. By using non-negative matrix factorization (NMF), we extracted muscle synergies from sixteen electromyography (EMG) signals on the right side and assigned similar muscle synergies among SW, LT, and RT into the same cluster by combining k-means clustering and intraclass correlation coefficient (ICC) analysis. We obtained task-specific clusters of muscle synergies extracted from SW, LT, or RT condition and identified the clusters that share synergies among the conditions. The central nervous system produces specific synergies involving turning behaviors and fundamental synergies for walking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00222895.2017.1408558 | DOI Listing |
Trials
January 2025
Neuromusculoskeletal Rehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Background: Urinary incontinence (UI) is a common and debilitating condition among people with multiple sclerosis (MS) and is more prevalent among women. Over the past decade, numerous studies have investigated the effects of pelvic floor muscle training (PFMT) as a treatment for UI in people with MS. MS negatively impacts pulmonary function even in the early stages of the disease and people with MS may experience respiratory muscle weakness.
View Article and Find Full Text PDFSci Robot
January 2025
Department of Bioengineering, Imperial College of London, London, UK.
Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.
View Article and Find Full Text PDFWearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFWearable Technol
November 2024
BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!