Inhibition of Initial Attachment of Injured Salmonella Typhimurium onto Abiotic Surfaces.

J Food Prot

1 Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; and.

Published: January 2018

Following sanitation interventions in food processing facilities, sublethally injured bacterial cells can remain on food contact surfaces. We investigated whether injured Salmonella Typhimurium cells can attach onto abiotic surfaces, which is the initial stage for further biofilm development. We utilized heat, UV, hydrogen peroxide, and lactic acid treatments, which are widely utilized by the food industry. Our results showed that heat, UV, and hydrogen peroxide did not effectively change populations of attached Salmonella Typhimurium. Cells treated with hydrogen peroxide had a slightly higher tendency to adhere to abiotic surfaces, although there was no significant difference between the populations of control and hydrogen peroxide-treated cells. However, lactic acid effectively reduced the number of Salmonella Typhimurium cells attached to stainless steel. We also compared physicochemical changes of Salmonella Typhimurium after application of lactic acid and used hydrogen peroxide as a positive control because only lactic acid showed a decreased tendency for attachment and hydrogen peroxide induced slightly higher numbers of attached bacteria cells. Extracellular polymeric substance produced by Salmonella Typhimurium was not detected in any treatment. Significant differences in hydrophobicity were not observed. Surface charges of cell membranes did not show relevant correlation with numbers of attached cells, whereas autoaggregation showed a positive correlation with attachment to stainless steel. Our results highlight that when lactic acid is applied in a food processing facility, it can effectively interfere with adhesion of injured Salmonella Typhimurium cells onto food contact surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-17-209DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
28
hydrogen peroxide
20
lactic acid
20
typhimurium cells
16
injured salmonella
12
abiotic surfaces
12
food processing
8
cells
8
food contact
8
contact surfaces
8

Similar Publications

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Characterization of an Acetogenin-Carrying Nanosuspension and Its Effect on Bacteria of Interest in the Poultry Industry.

Microorganisms

December 2024

Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Tepic 63175, Mexico.

This work aimed to develop a nanosuspension (NSps) as an acetogenin (ACGs) carrier, using soy lecithin (SL) and hydroxypropyl-β-cyclodextrin (βCD) named NSps-βCDSL-ACGs. It was characterized by various spectroscopic techniques (DLS, FTIR, UV-vis diffuse reflectance). Moreover, the NSps morphology was observed by transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Background/objectives: This study aims to characterize antibiotic resistance (AR) and virulence markers in spp. isolated from Romanian outpatients' stool samples.

Methods: In 2019, community-acquired strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates.

View Article and Find Full Text PDF

In an era dominated by the phenomenon of antibiotic resistance, it is increasingly important to look for alternatives to synthetic antibiotics. In light of these considerations, the synergistic use of essential oils and Antimicrobial Peptides (AMPs) seems a viable strategy. In this study, we assessed the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Fractional Inhibitory Concentration (FIC) of three Essential Oils (EOs): winter savory (), bergamot () and cinnamon () and of the insect antimicrobial peptide Cecropin A (CecA), alone and in combination with EOs, against two Gram-negative ATCC bacterial strains: and serovar Typhimurium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!