Phase Transitioning the Centrosome into a Microtubule Nucleator.

Biochemistry

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States.

Published: January 2018

Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193265PMC
http://dx.doi.org/10.1021/acs.biochem.7b01064DOI Listing

Publication Analysis

Top Keywords

understanding centrosome
8
phase transitions
8
centrosome
7
phase transitioning
4
transitioning centrosome
4
centrosome microtubule
4
microtubule nucleator
4
nucleator centrosomes
4
centrosomes self-assembling
4
self-assembling micron-scale
4

Similar Publications

Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1.

Proc Natl Acad Sci U S A

December 2024

Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.

Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC.

View Article and Find Full Text PDF

Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.

View Article and Find Full Text PDF

Repurposing of pleiotropic factors during execution of diverse cellular processes has emerged as a regulatory paradigm. Embryonic development in metazoans is controlled by maternal factors deposited in the egg during oogenesis. Here, we explore maternal role(s) of Caspar (Casp), the orthologue of human Fas-associated factor-1 (FAF1) originally implicated in host-defense as a negative regulator of NF-κB signaling.

View Article and Find Full Text PDF

Isolation of Mitotic Centrosomes from Cultured Human Cells.

Methods Mol Biol

December 2024

Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

The centrosome plays a crucial role in facilitating mitotic spindle assembly through its microtubule organizing capacities. Analyzing the composition, structure, and functions of mitotic centrosomes is essential for understanding the mechanisms underlying cell division and centrosome-associated diseases. Isolating centrosomes is an effective method to gain comprehensive information about them while minimizing interference from other cellular components.

View Article and Find Full Text PDF

A Method for Analyzing Acentrosomal Mitotic Spindles in Human Cells.

Methods Mol Biol

December 2024

Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.

Centrosomes, the major microtubule organizing centers, facilitate mitotic spindle formation. However, recent studies have revealed that some cancer cells lack centrosomes. These findings suggest that certain types of cancer cells drive centrosome-independent mechanisms for the assembly of mitotic spindles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!