Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin.

Nat Chem

Dartmouth College, Department of Chemistry, Burke Laboratory, Hanover, New Hampshire 03755, USA.

Published: January 2018

Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis. Here, we describe an advance in chemical synthesis that has established an enantiospecific means to access novel steroids with unprecedented facility and flexibility through the sequential use of two powerful ring-forming reactions: a modern metallacycle-mediated annulative cross-coupling and a new acid-catalysed vinylcyclopropane rearrangement cascade. In addition to accessing synthetic steroids of either enantiomeric series, these steroidal products have been selectively functionalized within each of the four carbocyclic rings, a synthetic ent-steroid has been prepared on a multigram scale, the enantiomer of a selective oestrogen has been synthesized, and a novel ent-steroid with growth inhibitory properties in three cancer cell lines has been discovered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821131PMC
http://dx.doi.org/10.1038/nchem.2865DOI Listing

Publication Analysis

Top Keywords

synthetic steroids
8
synthetic
4
synthetic nat-
4
nat- ent-steroids
4
ent-steroids chemical
4
chemical steps
4
steps epichlorohydrin
4
epichlorohydrin today
4
today 100
4
100 food
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!