We have investigated the stationary sedimentation profiles of colloidal gels obtained by an arrested phase-separation process driven by depletion forces, which have been compressed either by natural gravity or by a centrifugal acceleration ranging between 6g and 2300g. Our measurements show that the gel rheological properties display a drastic change when the gel particle volume fraction exceeds a value [Formula: see text], which barely depends on the strength of the interparticle attractive forces that consolidate the network. In particular, the gel compressive yield stress [Formula: see text], which increases as [Formula: see text] for [Formula: see text], displays a diverging behaviour for [Formula: see text], with an asymptotic value that is close to the random close packing value for hard spheres. The evidence we obtained suggests that [Formula: see text] basically coincides with the liquid (colloid-rich) branch of the metastable coexistence curve, rather than with the lower (and ϕ-dependent) values expected for an attractive glass line penetrating inside the coexistence region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aaa2d1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!