Prediction of Drug-Plasma Protein Binding Using Artificial Intelligence Based Algorithms.

Comb Chem High Throughput Screen

Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, Uttar Pradesh, India.

Published: January 2019

Aim And Objective: Plasma protein binding (PPB) has vital importance in the characterization of drug distribution in the systemic circulation. Unfavorable PPB can pose a negative effect on clinical development of promising drug candidates. The drug distribution properties should be considered at the initial phases of the drug design and development. Therefore, PPB prediction models are receiving an increased attention.

Materials And Methods: In the current study, we present a systematic approach using Support vector machine, Artificial neural network, k- nearest neighbor, Probabilistic neural network, Partial least square and Linear discriminant analysis to relate various in vitro and in silico molecular descriptors to a diverse dataset of 736 drugs/drug-like compounds.

Results: The overall accuracy of Support vector machine with Radial basis function kernel came out to be comparatively better than the rest of the applied algorithms. The training set accuracy, validation set accuracy, precision, sensitivity, specificity and F1 score for the Suprort vector machine was found to be 89.73%, 89.97%, 92.56%, 87.26%, 91.97% and 0.898, respectively.

Conclusion: This model can potentially be useful in screening of relevant drug candidates at the preliminary stages of drug design and development.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1386207321666171218121557DOI Listing

Publication Analysis

Top Keywords

vector machine
12
protein binding
8
drug distribution
8
drug candidates
8
drug design
8
design development
8
support vector
8
neural network
8
set accuracy
8
drug
6

Similar Publications

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

Objective: To investigate machine learning-based regression models to predict the postoperative apnea-hypopnea index (AHI) for evaluating the outcome of velopharyngeal surgery in adult obstructive sleep apnea (OSA) subjects.

Study Design: A single-center, retrospective, cohort study.

Setting: Sleep medical center.

View Article and Find Full Text PDF

Cure rate models have been thoroughly investigated across various domains, encompassing medicine, reliability, and finance. The merging of machine learning (ML) with cure models is emerging as a promising strategy to improve predictive accuracy and gain profound insights into the underlying mechanisms influencing the probability of cure. The current body of literature has explored the benefits of incorporating a single ML algorithm with cure models.

View Article and Find Full Text PDF

Next-generation diabetes diagnosis and personalized diet-activity management: A hybrid ensemble paradigm.

PLoS One

January 2025

Department of Information Systems, College of Computer Sciences and Information Technology (CCSIT), King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia.

Diabetes, a chronic metabolic condition characterised by persistently high blood sugar levels, necessitates early detection to mitigate its risks. Inadequate dietary choices can contribute to various health complications, emphasising the importance of personalised nutrition interventions. However, real-time selection of diets tailored to individual nutritional needs is challenging because of the intricate nature of foods and the abundance of dietary sources.

View Article and Find Full Text PDF

A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!