Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis.

Anal Chem

Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California, United States.

Published: January 2018

Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991602PMC
http://dx.doi.org/10.1021/acs.analchem.7b04050DOI Listing

Publication Analysis

Top Keywords

chemical lysis
8
cells
5
single-cell rt-pcr
4
rt-pcr microfluidic
4
microfluidic droplets
4
droplets integrated
4
integrated chemical
4
lysis droplet
4
droplet microfluidics
4
microfluidics identify
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine.

Small Methods

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

Bacterial ghosts (BGs), non-living empty envelopes of bacteria, are produced either through genetic engineering or chemical treatment of bacteria, retaining the shape of their parent cells. BGs are considered vaccine candidates, promising delivery systems, and vaccine adjuvants. The practical use of BGs in vaccine development for humans is limited because of concerns about the preservation of viable bacteria in BGs.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria are a serious global health threat, making infections harder to treat and increasing medical costs and mortality rates. To combat resistant bacterial strains, a series of compounds (QS1-12) were synthesized with an excellent yield of 85-92%. Initial assessments of these analogues as potential antibacterial agents were conducted through a preliminary screening against a panel of diverse bacterial strains.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!