Transaminases, which catalyze the stereoselective transfer of an amino group between an amino donor and a prochiral ketone substrate, are interesting biocatalytic tools for the generation of optically pure chiral amines. In particular, amine transaminases (ATAs) are of industrial interest because they are capable of performing reductive amination reactions using a broad range of amine donors and acceptors. The most remarkable example of ATAs industrial application is in the production process of the anti-hyperglycaemic drug sitagliptin (Januvia/Janumet), which generated around 6 billion U.S. dollars of revenue to Merck in 2016. In this review, an update about the availability of microbial ATAs, discovered by both screening and database-mining approaches, or obtained by protein engineering of wild-type enzymes, will be provided. Current challenges in ATAs application and possible solutions will be also discussed. In particular, innovative biocatalytic process strategies aimed at the improvement of ATAs performances in chiral amines synthesis, e.g., using in situ product removal process strategies or flow reactors, will be presented. The progress in the industrial exploitation of these enzymes will be highlighted by selected examples of large-scale ATA-catalyzed processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-017-2395-2 | DOI Listing |
Nat Commun
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Reductive amination is one of the most synthetically direct routes to access chiral amines. Several Imine Reductases (IREDs) have been discovered to catalyze reductive amination (Reductive Aminases or RedAms), yet they are dependent on the expensive phosphorylated nicotinamide adenine dinucleotide cofactor NADPH and usually more active at basic pH. Here, we describe the discovery and synthetic potential of an IRED from (RedAm) that catalyzes reductive amination between a series of medium to large carbonyl and amine compounds with conversions of up to >99% and 99% enantiomeric excess at neutral pH.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China. Electronic address:
J Org Chem
January 2025
Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany.
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for -Boc-3-amino/hydroxy-pyrrolidine and -Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!