Purpose: F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is emerging to be a useful tool in supporting the diagnosis of AIE. In this study, we describe the metabolic patterns on F-18 FDG PET imaging in AIE.
Methods: Twenty-four antibody-positive patients (anti-NMDA-15, anti-VGKC/LGI1-6, and anti-GAD-3), 14 females and 10 males, with an age range of 2-83 years were included in this study. Each PET study was evaluated visually for the presence of hypometabolism or hypermetabolism and semiquantitatively using Cortex ID (GE) and Scenium (Siemens) by measuring regional Z-scores. These patterns were correlated with corresponding antibody positivity once available.
Results: Visually, a pattern of hypometabolism, hypermetabolism, or both in various spatial distributions was appreciated in all 24 patients. On quantitative analysis using scenium parietal and occipital lobes showed significant hypometabolism with median Z-score of -3.8 (R) and -3.7 (L) and -2.2 (R) and -2.5 (L) respectively. Two-thirds (16/24) showed significant hypermetabolism involving the basal ganglia with median Z-score of 2.4 (R) and 3.0 (L). Similarly on Cortex ID, the median Z-score for hypometabolism in parietal and occipital lobes was -2.2 (R) and -2.4 (L) and -2.6 (R) and -2.4 (L) respectively, while subcortical regions were not evaluated. MRI showed signal alterations in only 11 of these patients.
Conclusion: There is heterogeneity in metabolic topography of AIE which is characterized by hypometabolism most commonly involving the parietal and occipital cortices and hypermetabolism most commonly involving the basal ganglia. Scenium analysis using regional Z-scores can complement visual evaluation for demonstration of these metabolic patterns on FDG PET.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-017-1956-2 | DOI Listing |
Biomedicines
November 2024
Department of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Background: It is well known from cross-sectional studies that pain intensity affects brain activity as measured by electroencephalography (EEG) in people with neuropathic pain (NP). However, quantitative characterisation is scarce.
Methods: In this longitudinal study, ten people with spinal cord injury-related NP recorded their home EEG activity ten days before and after taking medications over a period of several weeks.
Brain Sci
November 2024
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
Action video games foster competitive environments that demand rapid spatial navigation and decision-making. Action video gamers often exhibit faster response times and slightly improved accuracy in vision-based sensorimotor tasks. However, the underlying functional and structural changes in the two visual streams of the brain that may be contributing to these cognitive improvements have been unclear.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA. Electronic address:
The legalization of recreational cannabis use has expanded the availability of this psychoactive substance in the United States. Research has shown that chronic cannabis use is associated with altered working memory function, however, the brain areas and neural dynamics underlying these affects remain poorly understood. In this study, we leveraged magnetoencephalography (MEG) to investigate neurophysiological activity in 45 participants (22 heavy cannabis users) during a numerical WM task, whereby participants were asked to either maintain or manipulate (i.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.
Behav Brain Res
January 2025
Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States of America.
Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder. As previous studies focused mainly on thalamofrontal connections, we comprehensively investigated between-group differences of thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.
Methods: A total of 38 children (19 with Autism Spectrum Disorder) underwent magnetic resonance imaging and behavioral assessment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!