Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera and , indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722836 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.02400 | DOI Listing |
Biodivers Data J
December 2024
Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280, Puerto Vallarta, Jalisco, Mexico Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280 Puerto Vallarta, Jalisco Mexico.
Background: Cumaceans mostly inhabit marine environments, where they play a crucial role in marine food webs and actively participate in the transfer between benthic and pelagic systems. Scientific interest in these crustaceans has been increasing, but is limited to certain geographic areas, which do not include extreme environments such as hydrothermal vents.
New Information: Therefore, this study aimed to report the distribution of cumaceans in shallow-water hydrothermal vents at Banderas Bay and to identify the specimens present.
Mar Pollut Bull
December 2024
Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan. Electronic address:
The volcanic island, Kueishan Island, harbors two unique shallow-water ecosystems: hydrothermal vents and coral communities. The unique geologic features render the island an ideal place as a spectrum for studying two different ecosystems and mimicking the impacts of climate change on coral reef biota in the future. However, little is known about the meiofauna community there.
View Article and Find Full Text PDFGeobiology
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, California, USA.
The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.
View Article and Find Full Text PDFSci Total Environ
December 2024
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan. Electronic address:
To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia. Electronic address:
The global crystallographic texture of calcite and aragonite in the shells of the bivalves Bathymodiolus thermophilus, Mytilus galloprovincialis, M. edulis and M. trossulus was studied by means of neutron diffraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!