Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work demonstrates that the rf-sputtering technique, combined with appropriate heat treatments, is potentially effective to develop new materials and devices based on oxide-interface and strain engineering. We report a study of the structural-physical properties relationship of high crystalline quality, highly oriented and epitaxial thin films of the lead-free (KNa)LaNbO (KNNLa) compound which were successfully deposited on Nb-doped SrTiO substrates, with orientations [100] (NSTO100) and [110] (NSTO110). The crystalline growth and the local ferroelectric and piezoelectric properties were evaluated by piezoresponse force microscopy combined with transmission electron microscopy and texture analysis by X-ray diffraction. Conditioned by the STO surface parameters, in the KNNLa films on NSTO100 coexist a commensurate [001]-tetragonal phase and two incommensurate [010]-monoclinic phases; while on NSTO110 the KNNLa films grew only in an incommensurate [101]-monoclinic phase. Both samples show excellent out-of-plane polarization switching patterns consistent with 180° domains walls; while for KNNLa/NSTO100 ferroelectric domains grow with the polarization pointing down, for KNNLa/NSTO110 they prefer to grow with the polarization pointing up. Comparing with previous reports on epitaxial KNN films, we find our samples to be of very high quality regarding their crystalline growth with highly ordered ferroelectric domains arrangements and, consequently, great potential for domain engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735188 | PMC |
http://dx.doi.org/10.1038/s41598-017-17767-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!