Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δC compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δC values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.6‰), and those typical of modern prokaryotic phototrophs (-25 ± 10‰). The SIMS data for the two highest δC Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δC taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δC taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776830 | PMC |
http://dx.doi.org/10.1073/pnas.1718063115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!