Epithelial cancers (carcinomas) comprise the top four causes of cancer-related deaths in the United States. While overall survival has been steadily improving, therapy-resistant disease continues to present a major therapeutic challenge. Carcinomas often exploit the normal developmental program, epithelial-to-mesenchymal transition (EMT), to gain a mesenchymal phenotype associated with increased invasiveness and resistance to apoptosis. We have previously shown that an isoxazole-based small molecule, ML327, partially reverses TGF-β-induced EMT in an immortalized mouse mammary epithelial cell line. Herein, we demonstrate that ML327 reverses much of the EMT gene expression program in cultured carcinoma cell lines. The reversal of EMT sensitizes these cancer cells to the apoptosis-inducing ligand TRAIL. This sensitization is independent of E-cadherin expression and rather relies on the downregulation of a major anti-apoptotic protein, cFLIP. Loss of cFLIP is sufficient to overcome resistance to TRAIL and exogenous overexpression of cFLIP restores resistance to TRAIL-induced apoptosis despite EMT reversal with ML327. In summary, we have utilized an isoxazole-based small molecule that partially reverses EMT in carcinoma cells to demonstrate that cFLIP critically regulates the apoptosis resistance phenotype associated with EMT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5731856 | PMC |
http://dx.doi.org/10.18632/oncotarget.19557 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!